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ABSTRACT
Immediately following the Second World War, between 1947 and 1955, several

classic papers quantified the fundamentals of human speech information process-

ing and recognition. In 1947 French and Steinberg published their classic study

on the articulation index. In 1948 Claude Shannon published his famous work

on the theory of information. In 1950 Fletcher and Galt published their theory of

the articulation index, a theory that Fletcher had worked on for 30 years, which

integrated his classic works on loudness and speech perception with models of

speech intelligibility. In 1951 George Miller then wrote the first book Language and

Communication, analyzing human speech communication with Claude Shannon’s

just published theory of information. Finally in 1955 George Miller published the

first extensive analysis of phone decoding, in the form of confusion matrices, as a

function of the speech-to-noise ratio. This work extended the Bell Labs’ speech

articulation studies with ideas from Shannon’s Information theory. Both Miller and

Fletcher showed that speech, as a code, is incredibly robust to mangling distortions

of filtering and noise.

Regrettably much of this early work was forgotten. While the key science

of information theory blossomed, other than the work of George Miller, it was

rarely applied to aural speech research. The robustness of speech, which is the most

amazing thing about the speech code, has rarely been studied.

It is my belief (i.e., assumption) that we can analyze speech intelligibility

with the scientific method. The quantitative analysis of speech intelligibility requires

both science and art. The scientific component requires an error analysis of spo-

ken communication, which depends critically on the use of statistics, information

theory, and psychophysical methods. The artistic component depends on knowing

how to restrict the problem in such a way that progress may be made. It is critical

to tease out the relevant from the irrelevant and dig for the key issues. This will

focus us on the decoding of nonsense phonemes with no visual component, which

have been mangled by filtering and noise.



This monograph is a summary and theory of human speech recognition. It

builds on and integrates the work of Fletcher, Miller, and Shannon. The long-term

goal is to develop a quantitative theory for predicting the recognition of speech

sounds. In Chapter 2 the theory is developed for maximum entropy (MaxEnt)

speech sounds, also called nonsense speech. In Chapter 3, context is factored in. The

book is largely reflective, and quantitative, with a secondary goal of providing an

historical context, along with the many deep insights found in these early works.
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Speech recognition, phone recognition, robust speech recognition, context models,

confusion matrix, features, events, articulation index
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Preface
I would like to say a few words on how this monograph came into existence, as well

as give some background as to where I believe this research is headed.

It was a wonderful opportunity to be in the Acoustics Research Department

of Bell Labs, and to work with such experienced and marvelous people, having an

amazing cross section of disciplines. Thirty two years of these associations has had

an impact on me. However, it would be wrong to characterize it as an easy ride.

When I first came to Bell I was interested in mathematical modeling, and by one

way or another, I came to the problem of modeling the cochlea (the inner ear). I

chose cochlear modeling because I felt it was a sufficiently complex problem that

it would take a long time to solve. This sense was correct. While we know much

more about the cochlea today, we do not yet have a solution to this complex organ’s

secrets.

In 1983, AT&T was divested by a Justice Department law suit. AT&T had

been a regulated monopoly, and there were forces in the government that believed

this was a bad thing. Perhaps such regulation was a bit too socialistic for some

people. Regardless of what they thought, AT&T was not resistant to being broken

up, resulting in the creation of the independent “Baby Bells” and the Mother

company AT&T, which controlled a majority of the long distance traffic.

Within months of this breakup, forces within AT&T lobbied for outside

ventures. I soon found myself part of one of these ventures, making a new “multi-

band wide dynamic range compression” hearing aid. That’s another story. The short

version is that by 1990 the new algorithm and hardware was a clear winner. During

this development phase, I learned many important things, and soon became friends

with interesting and important people within the hearing aid industry. AT&T was

especially close to CUNY and Profs. Harry Levitt and Arthur Boothroyd, and their
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collaborators. I had been teaching at CUNY, and the AT&T hearing aid venture

was soon using CUNY Ph.D. students, who helped with the development and

testing of the new AT&T hearing aid. It was an exciting time for all, and everyone

had a contribution to make. One of these Ph.D. students was Patricia Jeng (now

my wife). Her job was to develop a fitting system we called “Loudness growth in

octave bands,” or LGOB, conceived by Joe Hall and myself.

Soon after we were married, while working on her Ph.D., Pat read many of

the papers of Harvey Fletcher. Now I had heard of this famous guy, Fletcher, but

had never actually read even one of his papers. Pat suggested that I read Fletcher

and Munson, 1993, “Loudness, Its Definition, Measurement, and Calculation.” I

was sure I did not want to read some “silly old” paper on loudness, since I knew

(boy was I wrong!) that there was no science in such a topic, loudness being a

psychological variable and all, and therefore impossible to quantify. Pat persisted,

and I finally gave in, just to pacify her, as best I remember.

That paper changed my life. I found the paper to be fascinating, and the

more I learned about Fletcher, the more I realized that I was reading the work of a

true genius. I was soon on the war-path to read every one of his papers, finding each

to be just as good as the last. Soon after, the word got around that I was becoming

a bit of a Fletcher expert, and the ASA Speech Committee asked me to edit a

reprinting of Fletcher’s 1953 book (Fletcher had two Speech and Hearing books,

plus a book on Sunday school teaching). The 1953 book was soon reprinted by the

Acoustical Society, and it quickly became an instant “best seller,” just like it did in

1929 and again 1953.

One of the major problems that Fletcher and his colleagues worked on during

his 30-year career at AT&T, as head of the Acoustics Research Dept (the same

department that I was in), was his theory called the articulation index, which was an

interesting and important measure of the intelligibility of nonsense speech sounds.

Now I knew nothing of this, and was not even interested in speech perception, but I

had made the commitment to myself to read all of Fletcher’s papers and books, and
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so that is what I did. The more I learned of this AI theory, the more was obvious

that (1) nobody really understood it, (2) it was important, and (3) Fletcher had

done something really important that was, as best I could tell, largely undervalued.

I set out to rectify this situation. I halted my research on cochlear modeling, and

began trying to understand, in detail, Fletcher’s theory of speech recognition. I was

on to something new that was exciting: How do humans communicate?

It took me a long time to understand that there was no theory of speech

recognition. When I raised the question “What is the theory of human speech

recognition?” I got nasty glares. I had learned early in my career that when you on

to something good, people get mad at you when you mention it. And people were

getting mad. The madder they got, the more interested I was in this strange topic.

Soon I learned of a second genius, George Miller. While I have not been

successful (yet) in reading all of Miller’s work’s, I have certainly read many, as

reflected in this monograph. The work of Fletcher and Miller nicely complement

each other. It soon became clear that merging the results of Harvey Fletcher’s AI,

Claude Shannon’s information theory, and George Miller’s confusion matrix, was a

worthy exercise. Yet the more I talked about it, the madder everyone became. Truth

be known, I really tried to push the limits (and I frequently went over them). But

by doing this I was able to integrate many diverse opinions, and finally converge,

I hope, on a reasonable initial theory of human speech recognition, based on this

integrated input from a great number on opinions and discussions. Those of you

know who you are, and I thank you.

I would not claim this is anything close to a complete theory. It is not. It is,

however, a quantitative theory, and it seems to be the best we have at this time.

What is it missing? The problem remains unsolved. The basic units of aural speech

remain undiscovered. We have yet to “capture” an event. However I suspect that

we are closing in. The scientific method is leading us to this goal, of identifying

a perceptual event, and proving, beyond questionable doubt, that events represent

what humans extract when they decode speech. No machine today is even close

in performing with the accuracy of the human listener. Computers can do many
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amazing things, but to date they are very poor at speech recognition. The problem

is that we do not understand exactly what it is that humans do. Once this problem

is solved, I predict that machines will become as good as the very best humans at

decoding nonsense sounds in noise. However this still will not solve the problem

of matching human performance, since humans are amazing in their ability for

extracting subtle cues from context. Machines are notoriously bad at doing this, as

well. That will be someone else’s story.
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C H A P T E R 1

Introduction

As discussed by George Miller in Language and Communication (Miller, 1951),

speech intelligibility depends on a code that is incredibly robust to mangling dis-

tortions. Can we analyze this code using the scientific method? Miller’s analysis

provides a method that is both scientific and artful. His scientific analysis critically

depends on the use of statistics, information theory, and psychophysical methods.

The science of intelligibility is a science of the error analysis of human speech

communication. The goal in science is always to make a mathematical model.

Data is collected and tested against the model. This chapter is a review of what

is known about modeling human speech recognition (HSR) (see Table 1.1 for each

abbreviation). A model is proposed, and data are tested against the model.

Why would one wish to study human speech perception? First a great deal of

work has been done on this problem over the past 80 years. The time is now ripe to

review this large literature. There seem to be a large number of theories, or points

of view, on how human speech recognition functions, yet few of these theories are

either quantitative or comprehensive. What is needed is a set of models that are

supported by experimental observation and that quantitatively characterize how

human speech recognition really works. Finally there is the practical problem of

building a machine recognizer. One way to do this is to build a machine recognizer

based on the reversed engineering of human recognition. This has not been the

traditional approach to automatic speech recognition (ASR).
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As we shall see, human recognition performance drops to chance levels at a

wideband SNR somewhere between −20 and −25 dB and saturates at a minimum

error rate when the SNR is between −6 and 0 dB. The actual numbers depend

on the complexity (i.e., the entropy) of the recognition task. Machine performance

starts degrading by +20 dB SNR and approaches chance level near 0 dB SNR.

This large discrepancy in performance is called the robustness problem, which refers

to the sensitivity of the score to the SNR. What is needed is some insight into

why this large difference between human performance and present day machine

performance exists. I believe we can answer this question, and this is one of the

goals of this monograph.

In many of the early studies of human speech recognition, many language

context effects were controlled by testing with nonsense syllables. When listening

to meaningful words and sentences, people report what they understand, leaving

many errors they hear unreported. When listening to nonsense speech, having

limited language context constraints, people report what they actually hear. Thus

to meaningfully study the decoding of speech sounds, one must carefully control

for meaning (i.e., context). One does this by controlling the context channel with

the help of a maximum entropy (MaxEnt) source, more commonly called nonsense

syllables.

The channel, a mathematical correlate of a pair of wires, with additive noise

and codecs attached, is a key concept devised by Shannon in his Theory of Infor-

mation(Shannon, 1948). As developed in Miller’s book, information and commu-

nication theory form the underlying scientific basis for understanding the speech

code. The channel and the entropy measure of the source are fundamental building

blocks of any theory of communication. Speech and language are no exception.

The term nonsense syllables is a serious misnomer since a list of such syllables

contains meaningful words. What is required from such lists is that the probability

of each phone (i.e., phoneme) has equal probability. A proper name for such sounds

is maximum entropy syllables. For example, if the syllables are of the form consonant-

vowel (CV), VC and CVC, and each of the Cs and Vs are chosen from a fixed
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alphabet in an equally likely way, then this corpus of MaxEnt Syllables contains all

possible meaningful words of 2 and 3 phone duration. The use of such MaxEnt

syllables is required by Shannon’s model of communication, as captured by the

source-channel model.

There seems to be some widely held beliefs that are not supported by the

science. One of these is that improving the language processing in automatic speech

recognition will solve the robustness problem. Human performance starts with the

detection of basic speech sounds. The data show that when the speech is masked

by noise, and is at the detection threshold, humans are able to categorize the

sounds into broad phonetic categories. This detection threshold lies below −18 dB

wideband SNR, where classification is well above chance. Language models, which

are modeled by context processing (i.e., Markov chains and formal grammars),

cannot play a role in recognition until the error rate is less than some critical

number. One could argue about what this critical value is, but a reasonable number

must be near a 50% raw phone error. Until this critical value is reached, language

(and therefore any language model) does not have enough input information to

significantly improve the score.

As the score reaches 100%, language (context) plays a key role (context is best

at fixing sparse, complex [i.e., low entropy] errors). However, when studying the

robustness problem, one must carefully control for context and work at high-error

rates. Thus language, while critically important, plays a role only when the score

is above this critical threshold, and plays no role in understanding the robustness

problem. In fact, when it is not controlled, context gets in the way of understanding

robustness and becomes the problem.

This myth, in the power of context at low SNRs, is further complicated by

the fact that human language processing performance (phonology, phonotactics,

syntax, morphology, prosody, etc.) far exceeds the performance of today’s machine

language processing. This leads to the following dilemma for ASR, as predicted in

1963 by Miller and Isard: Both ASR’s front-end phone error rate and its back-end

context processing are significantly worse than those of HSR. Language models
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can never achieve the desired goals of solving the robustness problem because it

is the front end that accounts for the errors causing the robustness issues. Thus

we must deal directly with the front-end problems of talker variation, noise, and

spectral modifications, independent of context effects as HSR does. This view is

not to depreciate the importance of context, rather it is an attempt to clarify

the statement that improved context processing cannot solve the noise robustness

problem.

Another myth is that human listeners cannot hear subtle distinctions of

production that are not phonemic in their native language. It is an observable fact

that when we speak in everyday conversations, we mispronounce speech sounds a

large percentage of the time. The severity of these errors is a function of the speaker

and the conditions. For example, a person with a strong accent is an individual with

a bias for “mispronouncing” the sounds. This bias has many sources. The talker’s

first language is the most important factor. A well known example is the L/R

discrimination in Japanese talkers, when speaking English. Initially it was believed

that one cannot hear (and therefore cannot learn to correct) these biases. However

it is now believed that one may reduce, and in rare cases even eliminate these errors,

given proper training.

Yet another myth is the importance of coarticulation. It is well known that

the formants for a given vowel are greatly affected by the consonant preceding

or following the vowel. This may be seen in the spectrogram. Coarticulation is

frequently identified as a difficult, or even the key, problem, at the root of vowel

classification, because the variability of the formants due to this coarticulation effect

renders the utility of the formant frequencies unreliable as a feature set.

The circular nature of this argument is stunning. It starts by assuming that

the information is in the formant frequencies, and then when these features turn

out to be unreliable, summarizes the dilemma as coarticulation. Let us suppose that

the vowel speech code is not simply the formant frequencies. Would we come to the

same conclusion in that case? In my view, no. When one looks for psychophysical

evidence of coarticulation, there are none. Fletcher (1921) was the first to clearly



INTRODUCTION 5

show this with his models of MaxEnt syllable perception, which showed that the

probability for correctly identifying MaxEnt syllables may be treated as an inde-

pendent product of the component phone probabilities. These models were later

confirmed by Boothroyd (1968), and many others.

Unfortunately, these many myths die very slowly.

The art of studying speech intelligibility is to restrict the problem in such a

way that progress may be made. Intelligibility depends on visual as well as auditory

cues. In this chapter our discussion will be limited to that subset of intelligibility

which is unique to acoustic speech, without visual input. Thus we restrict the model

to the auditory channel, in the absence of the visual channel.

A tool critical to the study of human language perception is the use of MaxEnt

(i.e., nonsense) syllables. Such sounds were first extensively used in the Bell Labs

studies to control for language context effects. We will model context as a channel,

which carries the side information and is helpful to the listener.

While the use of MaxEnt syllables reduces the context effect, the complete

elimination of all context channels is an impossible task, and even undesirable.

English MaxEnt sounds are a distinct subset of speech sound. Tonal sounds are

common in many languages such as Chinese, but are absent in English. Thus the

subset of English MaxEnt sounds, while rich enough to encode English, is a distinct

subset of human vocalizations. The best we can do is attempt to characterize these

more subtle context channels, not eliminate them, as we attempt to saddle this

untamable “context beast.”

Intelligibility is the identification of meaningful speech, while articulation

is the identification of MaxEnt speech sounds (see Table 1.2 for important defi-

nitions). Understanding intelligibility scores requires models of phonology (phone

interactions), lexicality (vocabulary), grammar (form), and semantics (meaning). To

understand articulation scores, only models of phonetics are required, by design, by

carefully controlling for as many of these context channels as possible.

The word articulation is a tricky term, as it has strong meanings in both

the production (physical) and perceptual (psychophysical) domains. An articulatory
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feature is a speech production concept, whereas the articulation score is a perceptual

concept. It is quite unfortunate, and very confusing, that this word has these two

different but related meanings. We have inherited these terms from the long past,

and thus must deal with this confusion. One way to deal with this problem of

terminology would be to create new terms. However this would just obscure and

confuse the situation further, so I have avoided that approach. It is better to be

aware of, understand, and carefully parse the two meanings.

Is there any information left in speech after these major information chan-

nels, visual and context, have been removed? Emphatically, yes! In fact humans do

quite well in identifying basic speech sounds well below 0 dB SNR, without these

powerful information side channels. The reasons for this natural robustness in HSR

are becoming increasingly clear, and are the topic of this monograph.

1.1 PROBLEM STATEMENT
Articulation has been studied since the turn of the twentieth century by teams of

physicists, mathematicians, and engineers at Western Electric Engineering, and

later at The Bell Laboratories. A key science, information theory, also developed at

Bell Laboratories, is frequently emphasized, yet rarely applied to the field of speech

recognition. As a result, the source of robustness in HSR is poorly understood. For

example, many believe that robustness follows from context.

An example of this view may be found in Flanagan’s classic text Speech Analysis

Synthesis and Perception (Flanagan, 1965, p. 238)

Items such as syllables, words, phrases, and sometimes even sentences,

may therefore have a perceptual unit. In such an event, efforts to ex-

plain perception in terms of sequential identification of smaller segments

would not be successful.

This view is not supported by the data, as we shall see. Speech is first detected in

white (uniform spectrum) masking noise at about −25 dB SNR, and basic sound

classes are easily discriminated at −20 dB SNR. Language (sentences, phrases, and
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words), which depend on context, cannot play a role until a sufficient fraction of

the sounds have been decoded.

Only data and experiment can resolve the fundamental question: “What

are the smallest units that make up the building blocks of oral to aural speech

perception?” The resolution of this question may be answered by modeling intel-

ligibility and articulation data. The robustness of MaxEnt speech has been mea-

sured with a confusion matrix based on MaxEnt speech sounds (Campbell, 1910;

Miller and Nicely, 1955), which is denoted the articulation matrix (AM). Many

important issues regarding AM data remain unstudied.

This brings us to Miller’s unsolved problem, the decoding of MaxEnt speech

sounds, which have been mangled by filtering and noise. What are the remaining

information channels that need to be accounted for, and how can we model them?

This monograph will explore this question in some detail. We begin in Section 1.2

with some definitions and an overview of the robustness problem. We then proceed

to Chapter 2 with a literature review of articulation testing and the articulation index

(AI), and the work of George Miller, who first controlled for the articulation test

entropy H with the use of close set testing. This leads us to an AI analysis of Miller

and Nicely’s consonant confusion data. In Chapter 3 we look at the nature of the

context channel with a review of the context models of Boothroyd and Bronkhorst.

From this higher ground we model how aural speech is coded and processed by the

auditory system.

1.2 BASIC DEFINITIONS AND ABBREVIATIONS
Tables 1.1 and 1.2 provide key abbreviations and definitions used throughout the

paper. While it is important to carefully define all the terms, this section could be

a distraction to the flow of the discussion. Rather than bury these definitions in an

appendix, I have placed them here, but with the warning that the reader should not

get bogged down with the definitions. I suggest you first skim over this section,

to familiarize yourself with its content. Then proceed with the remainder of the

material, coming back when an important idea or definition is unclear. Refer to
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TABLE 1.1 Table of abbreviations

ASR automatic speech recognition

HSR human speech recognition

CV consonant–vowel (e.g., “pa, at, be, c”)

CVC consonant–vowel–consonant (e.g., “cat, poz, hup”)

snr signal-to-noise ratio (linear units) Eq. (2.15)

SNR 20 log10(snr ) (dB units)

AI articulation index

AIk specific AI (dB/dB units) Eq. (2.16)

PI performance intensity function Pc (SNR)

AM articulation matrix

VOT voice onset time

ZP zero predictability (− semantics; − grammar)

LP low predictability (− semantics; + grammar)

HP high predictability (+ semantics; + grammar)

ERP event related (scalp) potential

the tables as a quick guide, and then the text, once the basic ideas of the model are

established.

It is essential to understand the definition of articulation, the event, and why

the term phone is used rather than the popular term phoneme. A qualitative under-

stand of entropy is also required. All of the required terms are now carefully defined.

The phone vs. phoneme: The phone is any basic speech sound, such as a conso-

nant or vowel. It must be carefully distinguished from the phoneme, which is difficult

to define because every definition incorporates some form of minimal meaning. A

definition (see Table 1.2) has been chosen that is common, but is not universally

agreed upon.
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TABLE 1.2 Definitions

TERM DEFINITION

phone A consonant (C) or vowel (V) speech sound

syllable A sequence of C’s and V’s, denoted {C,V}
word A meaningful syllable

phoneme Any equivalent set of phones which leave a word

meaning invariant

allophones All the phone variants for a given phoneme

recognition Probability measure Pc of correct phone identification

articulation Recognition of nonsense syllables MaxEnt ({C,V})

intelligibility Recognition of words (i.e., meaningful speech)

confusion matrix Table of identification frequencies Csh ≡ Ch|s
articulation matrix A confusion matrix based on nonsense sounds

robustness Ratio of the conditional entropies for two conditions

to be compared

event A perceptual feature; multiple events define a phone

trial A single presentation of a set of events

state A values of a set of events at some instant of time

state machine A machine (program) that transforms from one state

to another

noiseless state

machine

A deterministic state machine

pn Probability of event n, of N possible events

information density In ≡ log2(1/pn), n = 1, . . . , N

entropy Average information: H ≡ �N
n=1 pn In

conditional entropy A measure of context: high entropy =⇒ low context

context Coordinated combinations of events within a trial

message Specific information transmitted by a trial (e.g., a syllable)
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I shall argue that meaning is irrelevant to the speech robustness problem.

During World War II, people were trained to transcribe languages that they did

not understand, and they did this with agility and fidelity. Fletcher AI theory (1921–

1950) was based on MaxEnt CV, VC, and CVC syllables (i.e., maximum entropy

syllables). Shannon formulated Information Theory based on entropy measures.

Miller and Nicely’s classic study used isolated consonants, which by themselves

have no meaning (Miller and Nicely, 1955).

Thus one may proceed with the study of human speech recognition, without

the concept of meaning, and therefore the phoneme. This view has a nice paral-

lel with Shannon’s theory of information, which specifically rejected meaning as

relevant (Shannon, 1948).

It is difficult to argue strongly for the importance of the phoneme, whose

definition depends on meaning, if meaning plays little or no role in peripheral

language processing (the robust identification of unit phones).

A syllables is one or more phones. A word is a syllable with meaning (it is

found in a dictionary).

Recognition is the probability of correct average identification, denoted Pc.

Recognition error, as given by

E % ≡ 100(1 − Pc),

is typically quoted in percent,1 and is the sum over all the individual sound confu-

sions. The recognition Pc (and thus the corresponding recognition error E %) is a

function of SNR. When the recognition is measured as a function of the signal to

noise ratio, it is frequently called a performance-intensity (PI) function, as a function

of the SNR in dB, denoted Pc (SNR).

Articulation is the recognition of MaxEnt speech sounds (e.g., nonwords),

while intelligibility is the recognition of meaningful sounds (dictionary words)

(Fletcher, 1929, p. 255).

1 The symbol ≡ is read “equivalence” and means that the quantity on the left is defined by the quantity
on the right.
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The articulation matrix, denoted Ph|s (SNR), tabulates the recognition scores

of hearing sound h after speaking sound s , where h and s are integers.

Robustness: An important, but again difficult, concept to define is that of ro-

bustness (an important topic of this chapter). The first property of robustness must

be that it is a relative measure. Second we would like a measure that is defined in

terms of bits. Specific examples of the use of such a relative measure can help us

to further nail down the full definition: An important example is the robustness of

one sound versus another (i.e., /pa/ vs. /ma/). Another example is the robustness

of one group of sounds, say the nasals, against another group of sounds, say the

fricatives.

In each example there are two cases we wish to compare, and we would like

a measure that tells us which is more robust. The candidate measure for the first

example of two sounds is the conditional entropy, defined as

H(h | s ) = −
∑

h

Ph log2(Ph|s ),

which is just the entropy of row s of the articulation matrix Ps ,h .

This measure is in bits, as required, for each spoken sound s . This measure

has the unfortunate property that it becomes smaller as the sound becomes more

certain, which is backward from a robustness measure. If we define the relative

measure as the ratio of two conditional entropies, for the two different sounds,

then we have a measure that increases as the score increases. For example, the

robustness of spoken sound s2 relative to that of s1 would be

R(s2/s1) =
∑

h Ph log2(Ph|s1 )∑
h Ph log2(Ph|s2 )

.

This measure would increase if s2 is more robust (has a smaller conditional entropy)

than s1.
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As a second example lets take the robustness of intelligibility vs. articulation

(i.e., the effect of context). In this case the robustness due to intelligibility would

be taken to be

R(I/A) =
∑

s ,h Ps ,h (A) log2(Ph|s (A))
∑

s ,h Ps ,h (I) log2(Ph|s (I))
,

where P (I) is with context (intelligibility) and P (A) is with no context (articula-

tion).

If we wish to compare the robustness of ASR and HSR, the robustness would

then be

R(HSR/ASR) =
∑

s ,h Ps ,h (ASR) log2(Ph|s (ASR))
∑

s ,h Ps ,h (HSR) log2(Ph|s (HSR))
.

For these last examples it makes sense to restrict comparisons to cases that have

the same maximum entropy, namely for which the corpus is the same size, if not

identical and the same SNR.

Events: In the speech perception literature the terms articulatory feature, per-

ceptual feature, and distinctive feature are commonly used, even interchangeably

(Parker, 1977). For example, voicing, nasality, and the place of a constriction in the

vocal tract, which occurs when forming a speech sound, constitute typical articu-

latory features. The term voicing is frequently spoken of as both a physical and a

perceptual feature. It seems wise to choose a new word to represent the perceptual

correlates of speech features. We use the word event to deal with such meaning.

The basic model of psychophysics and of the observer is shown in Fig 1.1.

As for the case of intensity and loudness, we need a language for relating perceptual

features (� variables) to physical articulatory features (� variables). Thus we speak

of the event when referring to the � correlate of an speech � feature. For example,

it might turn out that the �-event corresponding to the �-feature voicing is deter-

mined by quantizing the so-called � voice onset time (VOT) to some fixed time

range of values. A �-VOT between 0 and 30 ms might be �-VOICED, while

�-VOTs greater than 30 ms might be �-UNVOICED.
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Φ ΨOBSERVER

PHYSICAL PSYCHOPHYSICAL

CONTINUOUS DISCRETE

FIGURE 1.1 : The basic model of an observer with the physical variables � on the left

and the psychophysical variables � on the right. An example is acoustic intensity (the � or

physical intensity) and loudness (the � or psychoacoustic intensity). In the case of speech

perception we treat physical variables as analog (continuous) and psychophysical variables

as discrete, as in the case of events.

The event must be measured by experimental outcomes, expressed as a prob-

ability, rather than assumed a priori, as in the case of distinctive features. The

articulation matrix A(SNR) is the measure of these experimental outcomes. We

do an experiment where we repeat the stimulus many times, and we then define

a probability measure of the underlying binary event, in terms of the frequency

of its observation, based on a large number of subjects and a large number of

talkers.

Each presentation and reception is called a trial. This idea is a formal one,

as described by books on communication theory (Wozencraft and Jacobs, 1965,

Ch. 2) and probability theory (Papoulis, 1965, Section 2.2). These definitions, of

a trial and an event, as defined in this mathematical literature, are ideally suited to

our purpose.

When groups of events are mathematically bound together at an instant

of time, the group is called the state of the system. As an example, think of the

events that define the state of a phone. A machine state (think computer program)

is typically pictured as a box that transforms an input state into an output state.

When the state machine is deterministic, it is called a noiseless state machine. During

training (the learning phase), the state is not deterministic, but such a learning mode

is considered to be an exception for the purpose of modeling the state machine. We

view the auditory brain as a state machine decoding the events coming out of many

event processors, having inputs from the cochlea. This model structure represents

the “front end” of the HSR system.



14 ARTICULATION AND INTELLIGIBILITY

SNR: The SNR plays a very important role in the theory of HSR because it

is the underlying variable in the articulation index measure. The detection of any

signal is ultimately limited by detector noise. This leads to the concept of an in-

ternal noise, specified as a function of frequency. It is the internal signal-to-noise

ratio SNR( f ), a � variable, that ultimately determines our perceptual performance

(French and Steinberg, 1947; Allen and Neely, 1997). This quantity must be in-

ferred from external measurements.

An example is instructive: The external SNR of a pure tone, in wide

band noise, is not perceptually meaningful since a relevant noise bandwidth

must be used when calculating the detection threshold. This bandwidth, called

the critical bandwidth,2 is cochlear in origin, since the internal SNR( f ) de-

pends on cochlear filtering. The discovery of the cochlear critical bandwidth

marked the recognition of this fact (Fletcher and Munson, 1937; Fletcher, 1938;

French and Steinberg, 1947; Allen, 2001).

Even though speech is a wide band signal, exactly the same principle applies to

the detection of speech. The detection threshold for speech sounds are determined

by the same cochlear critical bandwidth. Unlike the tonal case, the peak to RMS

ratio of the speech in a critical band becomes a key factor when estimating the

speech detection threshold.

These basic issues of speech detection and articulation were well understood

by Fletcher and his colleagues Wegel, Steinberg, and Munson, and were repeatedly

described in many of their early papers. These points will be carefully reviewed in

the next chapter.

Two different notations for the signal-to-noise ratio shall be used: snr ≡
σs /σn and SNR ≡ 10 log10(σ 2

s /σ 2
n ). Each of these measures will be indexed

by integer k to indicate each critical band. Thus in critical band k, snrk ≡
σs ,k/σn,k .

2 In many of the early papers the level of a tone in noise above threshold, expressed in dB-SL, was
commonly denoted by the variable Z (French and Steinberg, 1947, Eq. 2, p. 97). This definition
explicitly accounts for the critical bandwidth of the ear.
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Context and entropy: The concept of context in language is ubiquitous. Context

results from a time-correlated sequence of speech units, leading to the higher prob-

ability of predicting a word, based on the preceding words. Mathematically this

can be expressed as

Pc (xn) < Pc (xn | C = x1x2 · · · xn−1), (1.1)

where xn are speech units and C is the conditioning context based on the last n − 1

sound units (i.e., words or phonemes). If xn are random unrelated units, then the

sequence x1, x2, . . . , xn−1 does not change the score of xn; i.e., the conditional

recognition of xn is the same as that of the isolated speech unit.

It is critically important to control for context effects when studying speech

recognition. Real words have greater context than randomly ordered meaningless

speech sounds, which ideally, would have none. Meaningful HP sentences have

greater context than MaxEnt ZP sentences. One classic way of modeling context

is with Markov models (Shannon, 1948, 1951).

By redundancy we mean the repetition of events within a trial.3 Sometimes

redundancy depends on context, as in the example Sierra Mountains.4

The information density In is defined as the log base 2 of the reciprocal

probability pn. The log base 2 is a simple transformation that gives units of bits.

The important concept here is reciprocal probability, so that a rare event (small

probability) is defined as having large information. The concept of probability,

and thus of information, requires a set of outcomes. The vector of probabilities [pn]

requires an index n labeling N possible outcomes, while element pn measures the

relative frequency (parts of a whole) of these outcomes, which obey the condition
∑

n pn = 1.

Entropy is the average amount of information, as computed by taking a

weighted average of the information density, as shown in Table 1.2. When all the

3 This term has been mathematically defined by Shannon in his classic paper (Shannon, 1948,
p. 24).

4 The word Sierra means mountain in Spanish (a language context).
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FIGURE 1.2 : Who is this monkey (chimp in this case) thinking of, and what does she

want to say? How many messages can a monkey type? This picture epitomizes the concept of

entropy. It is highly unlikely, yet not impossible, that through random typing, this monkey

will produce a work of Shakespeare, corresponding to an astronomically small entropy.

Of course even a single sentence of Shakespeare is virtually impossible for the monkey to

produce.

outcomes are equal (i.e., pn = 1/N) the entropy H is maximum, and the infor-

mation is minimum (Cover and Thomas, 1991). Fig. 1.2 is an epitome of entropy.

How many monkeys would it take to produce a work of Shakespeare? The entropy

of such a document is very low. The number of monkeys working in parallel that

are needed to have one of them produce such a document is astronomical.

1.3 MODELING HSR
It is important to develop a model of human speech recognition (HSR) that sum-

marizes what we know in a succinct manner. A model is presented in Fig 1.3,

which shows the structural relations between the various quantitative probabilistic

measures of recognition.
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It is widely accepted, typically with no justification, that HSR is modeled

by a front end driving a back end. These two terms have been used loosely in the

past, and they can have different meanings in different fields (e.g., speech, psy-

chology, and physiology). We shall define the front end as the acoustics process-

ing and event extraction stage and the back end as the context processing stage.

An excellent quantitative justification for doing this is provided by the work of

Boothroyd (1968) and later Bronkhorst (Bronkhorst et al. 1993), who defined a

front end and a back end in a mathematical model of context processing. In 1968

Boothroyd modeled the effects of word recognition, given phone scores, as a con-

textual constraint, and made empirical models to account for this context effect

(Boothroyd, 1968, 1993; Boothroyd and Nittrouer, 1988). Bronkhorst et al. (1993)

integrated Fletcher’s AI model and generalized Boothroyd’s context models to in-

clude all possible combinations of recognition errors, thereby quantitatively ex-

tending context models. They also derived model weighting coefficients from first

principles, using a lexicon.

In the model shown in Fig 1.3, all of the recognition errors in HSR are a result

of event extraction labeling errors, as depicted by the second box and modeled by

the articulation-band errors ek . In other words, sound recognition errors are modeled as

a noise in the event conversion from analog to discrete “objects.” I will argue that much

of this frontend event processing is implemented as parallel processing,5 which is

equivalent to assuming that the recognition of events is independent, on average,

across cochlear frequency bands.

As shown in Fig 1.3, the input speech signal is continuous, while the output

stream is discrete. Somewhere within the auditory brain discrete decisions must

be made. A critical aspect of our understanding is to identify at what point and at

what level this conversion from continuous to discrete takes place. I will argue that

this conversion is early, at the event level. Once these decisions have been made,

5 The idea behind parallel processing will be properly defined in Section 2.3.1.
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FIGURE 1.3 : Model block diagram summary of speech recognition by humans. At the

top of each block is a label that attempts to identify the physical operation, or a unit being

recognized. The labels below the boxes indicate the probability measure defined at that level.

See the text for the discussion of objects, at the very bottom. The speech s (t) enters on the

left and is processed by the cochlea (first block), breaking the signal into a filtered continuum

of band-passed responses. The output of the cochlea is characterized by the specific AIk , a

normalized SNR, expressed in dB units. The second box represents the work of the early

auditory brain, which is responsible for the identification of events in the speech signal, such

as onset transients and the detection of basic measures. The third block puts these basic

features together defining phones. The remaining blocks account for context processing.

the processing is modeled as a noiseless state machine (i.e., a state machine having

no stochastic elements).

When testing either HSR or ASR systems, it is critical to control for language

context effects. This was one of the first lessons learned by Fletcher et al. that context

is a powerful effect, since the score is strongly affected by context.

The HSR model of Fig 1.3 is a “bottom–up,” divide and conquer strategy.

Humans recognize speech based on a hierarchy of context layers. Humans have an

intrinsic robustness to noise and filtering. In fact, the experimental evidence suggests

that this robustness does not seem to interact with semantic context (language), as

reflected by the absence of feedback in the model block diagram.

Their is a long-standing unanswered question: Is there feedback from the back

end to the front end? The HSR model shown in Fig 1.3 assumes that events are
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extracted from the cochlear output in frequency regions (up to, say, the auditory

cortex), and then these discrete events are integrated by a noiseless state machine

representing the cerebral cortex. One of the most important issues developed here

is that front-end phone feature recognition analysis appears to be independent of

the back-end context analysis. Thus in the model shown in Fig 1.3 there is no

feedback.

The auditory system has many parallels to vision. In vision, features, such

as edges in an image, are first extracted because in vision, entropy decreases as we

integrate the features and place them in layers of context. This view is summarized

in Fig 1.3 as a feed-forward process. We recognize events, phones, phonemes, and

perhaps even words, without access to high-level language context. For designers

of ASR systems, this is important and good news because of its simplicity.

As early as 1963 Miller and Isard made a strong case against the use of

Markov models in speech recognition, using an argument based on robustness, in

an apparent reaction to the use of language (context) models (i.e., in ASR applica-

tions this amounts to hidden Markov models, or HMM) for solving the robustness

problem. While language context is key in reducing many types of errors, for

both ASR and HSR, the front-end robustness problem remains. Although it is

widely believed that there is much room for improvement in such language models

(Miller, 2001), it now seems clear that even major context processing improve-

ments will not solve the ASR noise robustness problem. We know this from an

analysis of data from the literature, which shows that humans attain their inherent

robustness to background noise early, independent of and before language context

effects.

Nonsense speech sounds may be detected starting at about −20 dB SNR

(wideband). Context effects begin having an impact when the score is above 50%

and have a minimal effect at low articulation scores below this score.

As discussed in Section 1.3.1, randomizing the word order of grammatically

correct sentences degrades the SNR by 6–10 dB. Miller argues that such a word-

randomizing transformation would have much larger performance degradation on
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a Markov driven ASR system, which systematically depends on word order (see

Section 1.3.1).

1.3.1 Context Models
An example of a context effect: A detailed example of the utility of context in

HSR was demonstrated by Miller (1962). This example stands out because of the

early use of ideas from information theory to control for the entropy of the source,

with the goal of modulating human performance via context. The experiment was

simple, yet it provides an insight into the workings of context in HSR.

In this experiment 5 groups of 5 words each make up the test set. This is

a closed-set6 listening task with the number of words and the SNR varied. There

are four conditions. For test condition one the subjects are shown 1 of the 5 lists,

and they hear a word from that list. For the other three conditions the subjects are

shown 1 list of all the 25 words. The probability correct Pc (SNR) was measured for

each of the four conditions:

• 5 words;

• 5 word grammatically correct sentences, chosen from the 25 words;

• 25 words;

• nongrammatical sentences chosen from the 25 words.

As described in Fig. 1.4, in condition (1) 5 word lists are used in each block

of trials. The lists are randomized. The subject hears 1 of 5 words, degraded by

noise, and is asked to pick the word from the list. In condition (3) the number

of words is increased from 5 to 25, causing a reduction of 4 dB in performance

(at the 50% level). These two conditions (1 and 3) were previously studied in a

classic paper (Miller et al., 1951), which observed that the size of the set of CVCs

has a large impact on the score, namely Pc (SNR,H) depends on the entropy H

6 A closed-set test is one with a limited number of outcomes that are known a priori to the subjects.
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FIGURE 1.4 : This figure, from Miller (1962), summarizes the results of a four-way

experiment, performed as a function of the SNR. Test 1 (open circles, dashed line) shows

Pc (SNR) for 5 word vocabularies, with no context. In test 2 (closed circles, solid line)

5-word sentences were made from the 5, 5-word lists. As an example “Don brought his

black socks.” The word “Don” was one of the 5 possibilities [Don, He, Red, Slim, Who].

For tests 1 and 2, Pc (SNR) is the same. Test 3 (open triangles, dashed line) was to test using

the larger corpus of one of the 25 words, spoken in isolation. Test 4 (closed triangles, solid

line) was to generate “pseudo-sentences” by reversing the order of the sentences of test 3.

Going from 5 to 25 isolated words (test 1–3) causes a 4 dB SNR reduction in performance

at the 50% correct level. Presenting the 25 words as pseudo-sentences, that make no sense

(test 4), has no effect on Pc (SNR). However, adding a grammar (test 2) to a 25 word test

returns the score to the 5 word test. In summary, increasing the test size from 5 to 25 words

reduces performance by 4 dB. Making 5 word grammatically correct sentences out of the

25 words restores the performance to the 5 word low entropy case.

of the task. In condition (2), the effect of a grammar context is measured. By

placing the 25 words in a context having a grammar, the scores returned to the 5

isolated word level (condition 1). When sentences having no grammar (pseudosen-

tences) were used (condition 4), generated by reversing the meaningful sentences

of condition (2), the score remains equal to the 25 isolated word case of condition

(3).
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Thus the grammar in experiment (2) improves the score to the isolated

word level (1), but not beyond. It probably does this by providing an improved

framework for remembering the words. Without the grammatical framework,

the subjects become confused and treat the pseudosentences as 25 random words

(Miller and Isard, 1963).

1.4 OUTLINE
The monograph is organized as follows: Sections 2.1 and 2.2 summarize important

results from the 30 years of work (1921–1950) by Fletcher and his colleagues, which

resulted in articulation index theory, a widely recognized method of characterizing

the information bearing frequency regions of speech. We shall show that the AI is

similar to a channel capacity, which is a key concept from information theory defining

the maximum amount of information that may be transmitted on a channel. Sec-

tion 2.4 summarizes the speech work of George Miller. Miller showed the im-

portance of source entropy (randomness) in speech perception. He did this by

controlling for both the cardinality (size of the test corpus), the signal to noise ratio

of the speech samples and the context. Section 2.7 discusses the validation and sec-

tion 2.8 criticisms of articulation index theory. Section 3 discusses the importance

of context on recognition, summarizing key results. For continuity, research results

are presented in chronological order.
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C H A P T E R 2

Articulation

In 1908 Lord Rayleigh reported on his speech perception studies using the “Acous-

ticon LT,” a commercial electronic sound system produced in 1905. As shown in

Fig. 2.1,1 it consisted of a microphone and four loudspeakers, and was sold as a “PA”

system. Rayleigh was well aware of the importance of the bandwidth and blind-

speech-testing to speech perception testing (Rayleigh, 1908). Apparently Rayleigh

was the first to use “electro-acoustics” in speech testing.

Rayleigh’s 1908 work was extended by George A. Campbell (Campbell,

1910), a mathematician by training (and an amazing engineer, in practice), trained

at Harvard and MIT, and employed by AT&T to design the transmission network.

Campbell is well known for his invention of the hybrid network (a 2–4 wire trans-

former), the loading coil (which greatly extended the frequency response of the

telephone line), and perhaps most important, the “wave” filter in 1917 (Campbell,

1922, 1937; Van Valkenburg, 1964; Wozencraft and Jacobs, 1965, p. 1).2

It was the development of the telephone (circa 1875) that both allowed and

pushed mathematicians and physicists to develop the science of speech percep-

tion. Critical to this development was probability theory. One of the main tools

was the confusion matrix Pc (hi | sj ), which estimates the probability Pc of hearing

speech sound hi when speaking sound sj (Campbell, 1910; Fletcher, 1929, pp. 261–

262).

1 http://dept.kent.edu/hearingaidmuseum/AcousticonLTImage.html.
2 Apparently these filters were first invented to filter speech so as to aid in intelligibility testing of

telephone channels.
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FIGURE 2.1: The Acousticon LT was invented in about 1905.

From 1910 to 1950 speech perception was extensively studied by telephone

research departments throughout the world. However, it was the work of Harvey

Fletcher in 1921 that made the first major breakthroughs (Fletcher, 1921). By 1930

millions of dollars were being spent each year on speech perception research at the

newly created Bell Labs (Rankovic and Allen, 2000). The key was his quantifica-

tion of the transmission of information, as characterized by MaxEnt syllable error

patterns. Fletcher’s final theory was not published until 1950, following his AT&T

retirement (Fletcher and Galt, 1950). A review of Fletcher’s work may be found in

(Allen, 1994, 1996).

The next breakthroughs were provided by George Miller and his colleagues,

working at Harvard’s Cruft Acoustics Lab during and following World War II.

Miller used concepts from information theory, developed at Bell Labs, by Claude

Shannon (Shannon, 1948), to quantify speech entropy. In 1951 Miller et al. quanti-

fied the effect of entropy on recognition by studying the intelligibility as a function of

the number of choices. The insight for these studies came from his work on speech

masking, where AI theory played an important role (Miller, 1947a). The same year

(1951) Miller published his treatise on speech and information theory, which was

the first to explore the application of Shannon’s theory to HSR (Miller, 1951). In

1955 Miller and Nicely published the first extensive confusion matrices (i.e. AM)

for filtered and noisy CV sounds.3 Starting with the articulation measurements by

3 Earlier but limited AMs were published by Campbell (1910) and Knudsen (1929).
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Fletcher, we know that most speech sound features are spread out over a wide band

of frequencies (Fletcher, 1922a, 1922b).

2.1 FLETCHER AND GALT (1950)
Harvey Fletcher had an amazing career, and lived to 96 years (Allen, 1994). One

of his many important contributions was his detailed analysis of speech artic-

ulation and intelligibility. This work is summarized by articulation index theory,

based on the idea of independent recognition of speech events in frequency bands

(Fletcher, 1921; French and Steinberg, 1947; Fletcher and Galt, 1950).

It may not be widely appreciated that his demonstration of band-

independence (the basic premise of the AI) was not assumed, but was deduced

from an additivity principle, and demonstrated by experimental results. His idea

was to find a functional transformation on band articulations that would make the

transformed articulations additive. The data-collection phase took tens of years,

and costed millions of dollars. As a result of this massive effort, the United States

had the highest quality telephone service on the planet.

The telephone began as a very crude device, initially providing poor intel-

ligibility. It was immediately clear that dramatic improvements were necessary if

they were going to build and maintain a national telephone network. Fortunately

there was great economic incentive to do so. The tedious speech testing work easily

paid its own way. After years of experimentation with speech sounds, Fletcher and

his team developed an efficient speech test. The key was to use nonsense speech

sounds composed of a balance of CVC, CV, and VC sounds. The exact balance

was determined by listening to live conversations on the network. At the time (un-

like today) the scientific observation of telephone calls was not illegal. J.Q. Stewart

played an important role in developing the application of probability theory to

speech (Fletcher and Galt, 1950; Rankovic and Allen, 2000; Allen, 1994).

The experiment: Articulation testing consists of playing nonsense syllables com-

posed of 60% CVC and 20% each of CV and VC sounds. These three types of speech
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TABLE 2.1: Types of Syllables in Telephone Conversations in Percent

after Table 13 of Fletcher (1953)

SYLLABLE TYPE OCCURRENCE (%)

V 9.7

VC 20.3

CV 21.8

CVC 33.5

VCC 2.8

CCV 0.8

CVCC 7.8

CCVC 2.8

CCVCC 0.5

100

sounds have been shown to compose 76% of all telephone speech (see Table 2.1:).

This use of balanced nonsense speech sounds approximately maximizes the entropy

of the corpus. This was an important method, first used in about 1921, to control

for context effects, which were recognized as having a powerful influence on the

recognition score Pc .

The speech corpus was held constant across experiments to guarantee that

the source entropy was constant. Even though information theory had not yet been

formally proposed, the concepts were clear to those doing the tests. The rules were

set by Campbell, Fletcher, and Stewart, all of whom were trained mathematically

and were highly sophisticated in such detailed matters.

The articulation test crew consisted of 10 members, with 1 member of the

crew acting as a caller. A typical test is shown in Fig. 2.2. This record is from

March 1928, and the testing condition was lowpass filtering at 1500 Hz. The
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1500 Hz lowpass filtering

MODELSDATA

v Pc(vowels) = 0.909

c ≡
≡ ≡

≡

Pc(consonants) =0.74 s = 0.505

s Pc(phone) = (v + c)/3 = 0.796
S Pc(syllable) = 0.515 S = cvc = 0.498 (CVC syllable model)

(3 phone syllable model)

March 1928

FIGURE 2.2: Typical test record for the 1928 Western Electric research Laboratory speech

intelligibility testing method.

sounds were typically varied in level to change the signal-to-noise ratio to sim-

ulate the level variations of the network. Thus three types of distortions were

simultaneously used: lowpass filtering, highpass filtering, and a variable SNR

(Fletcher, 1995).

What they found: In the example shown in Fig. 2.2, the percent correct for

syllables is 51.5%. The test consisted of the caller repeating context neutral (ZP)

sentences, such as “The first group is na’v” and “Can you hear pōch.” In the first

presentation, the syllable was incorrectly heard as “ma’v,” making an error on the

initial consonant. In the second presentation the syllable is correctly heard. All the

initial consonants, vowels, and final consonants, were scored and several measures

were computed.

The syllable probability correct [S ≡ Pc (syllable)] was found to be 51.5%

correct, as shown in the upper right corner of the score sheet. The vowel recognition
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score v was 90.9%. The average of the initial c i and final c f consonant score c =
(c i + c f)/2 was found to be 74%. These numbers characterize the raw data. Next

the data is modeled, as shown on the right lower portion of the figure. The mean-

CVC-syllable score is modeled by the triple product

Ŝ = cvc. (2.1)

From many measurements it was found that these models did a good job

of characterizing the raw data (Fletcher, 1995, pp. 175, 178, 196–218). Based on

many records similar to the one shown in Fig. 2.2, they found that the average

MaxEnt CVC phone recognition, defined by

s ≡ (2c + v)/3, (2.2)

did a good job of representing MaxEnt CVC syllable recognition, defined by

S3 ≡ cvc ≈ s 3. (2.3)

Similarly, MaxEnt CV and VC phone recognitions were well represented by

S2 ≡ (cv + vc )/2 ≈ s 2. (2.4)

These few simple models worked well over a large range of scores, for both fil-

tering and noise (Rankovic, 2002). Note that these formulae only apply to MaxEnt

speech sounds, not meaningful words.

The above models are necessary but not sufficient to prove that the phones

may be modeled as being independent.4 Namely such models follow if indepen-

dence is assumed, but demonstrating their validity experimentally does not prove

independence. To prove independence, all permutations of element recognition and

not-recognition would need to be demonstrated. The closest we have to such an

analysis is the work of Bronkhorst et al. (Bronkhorst et al., 1993, 2002), as discussed

in Chapter 3.

4 Independence is defined as the condition that the joint probability is the product P (A, B) =
P (A)P (B) for all sets {A, B} for which P (A, B) is defined (Wozencraft and Jacobs, 1965, Ch. 2).
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The exact specifications for the tests to be modeled with these probability

equations are discussed in detail in (Fletcher, 1929, pp. 259–262). A most inter-

esting issue is the vowel to consonant ratio (Fletcher, 1995, Eq. (15.8), p. 283)

λ(SNR) ≡ v/c . (2.5)

Fletcher went to some trouble to discuss the effect of this ratio on the average

phone score s (this key argument is rarely, if ever, acknowledged), and showed

that λ has a surprisingly small effect on s . These observations might be important

in applications of AI theory to various languages if λ were significantly different

from that for English. Another implication is that this insensitivity may reflect

the much higher rate of recognition of vowels over consonants at moderate SNRs.

Unfortunately these questions about λ(SNR) remain largely unexplored.

In summary, the Fletcher et al. results were an important first step. The key

result was their finding that the average phone score Eq. (2.2) is an important sta-

tistical measure, useful when modeling syllable scores, as in Eq. (2.3) or Eq. (2.4).

2.1.1 Articulation Index Theory
Given the successful application of the average phone score Eq. (2.2), Fletcher

immediately extended the analysis to account for the effects of filtering the speech

into bands (Fletcher, 1921, 1929). This method later became known as articulation

index theory, which many years later developed into the well known ANSI 3.2 AI

standard. To describe this theory in full, we need more definitions, as provided by

Table 2.2.

The basic idea was to vary the SNR and the bandwidth of the speech signal,

in an attempt to idealize and simulate a telephone channel. Speech would be passed

over this simulated channel, and the articulation Pc (α, fc ) measured. The parameter

α is the gain applied to the speech, used to vary the SNR, given a fixed noise level.

The SNR depends on the spectral level (the power in a 1 Hz bandwidth, as a function

of frequency) of the noise and α. The consonant and vowel articulation [c (α) and
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TABLE 2.2: Table of Definitions Required for the Articulation Index

Experiments

SYMBOL DEFINITION

α Gain applied to the speech

c (α) ≡ Pc (consonant|α) consonant articulation

v(α) ≡ Pc (vowel|α) vowel articulation

s (α) = [2c (α) + v(α)]/3 Average phone articulation for CVC’s

e (α) = 1 − s (α) Phone articulation error

fc Highpass and lowpass cutoff frequency

s L(α, fc ) s for lowpass filtered speech

s H(α, fc ) s for highpass filtered speech

S(α, fc ) Nonsense syllable (CVC) articulation

W(α, fc ) Word intelligibility

I(α, fc ) Sentence intelligibility

v(α)] and s (α) are functions of the speech level. The mean phone articulation error

is e (α) = 1 − s (α).

The speech was filtered by complementary lowpass and high-pass filters,

having a cutoff frequency of fc Hz. The articulation for the low band is denoted as

s L(α, fc ) and for the high band as s H(α, fc ).

The syllable, word, and sentence intelligibility are S(α, fc ), W(α, fc ), and

I (α, fc ), respectively.

Formulation of the AI: Once the functions s (α), s L(α, fc ), and s H(α, fc ) are

known, it is possible to find relations between them. These relations, first derived

by Fletcher in 1921, were first published by French and Steinberg (1947).

Fletcher’s key insight here was to find a linearizing transformation of the

results. Given the wideband articulation s (α), and the banded articulations s L(α, fc )
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and s H(α, fc ), he sought a nonlinear transformation of probability AI, now called

the articulation index, which would render the articulations additive, namely

AI(s ) = AI(s L) + AI(s H). (2.6)

While there was no guarantee that such a transformation might exist, his intuition

was correct. This formulation payed off handsomely.

The function AI(s ) was determined empirically. It was found that the data

for the MaxEnt sounds closely follows the relationship

log(1 − s ) = log(1 − s L) + log(1 − s H), (2.7)

or in terms of error probabilities

e = e L e H, (2.8)

where e = 1 − s , e L = 1 − e L , and e H = 1 − s H. These findings suggest AI(s ) is of

the form

AI(s ) = log(1 − s )
log(emin)

. (2.9)

This normalization parameter emin is the minimum error, while smax is the maximum

value of s , given ideal conditions (i.e., no noise and full speech bandwidth), with

emin ≡ 1 − smax. Solving Eq. (2.9) for s gives

s (AI) = 1 − emin
AI. (2.10)

This equation is the fundamental relationship that specifies the average phone

score for MaxEnt C,V sounds, in terms of the AI. Again it must be emphasized

that Eq. (2.10) only holds for MaxEnt speech sounds.

The total error e = emin
AI in Eq. (2.10) was represented by Fletcher as e =

10−AI/0.55. Both expressions are exponential in AI, differing only in the choice of

the base
(
emin = 10(−1/0.55)

)
.

For much of the Bell Labs work smax = 0.9848 (i.e., 98.5% was the max-

imum articulation), corresponding to emin = 0.015 (i.e., 1.5% was the minimum
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articulation error) (Rankovic and Allen, 2000; MM-3373, Sept. 14, 1931, J.C.

Steinberg; Fletcher, 1995, p. 281) and Galt’s notebooks (Rankovic and Allen, 2000).

Fletcher’s simple two-band example (Fletcher, 1995, p. 281) illustrates

Eq. (2.8): If we have 100 spoken sounds, and 10 errors are made while listen-

ing to the low band and 20 errors are made while listening to the high band then

e = 0.1 × 0.2 = 0.02, (2.11)

namely two errors will be made when listening to the full band. Thus the wide-

band articulation is 98% since s = 1 − 0.02 = 0.98. The wideband MaxEnt CVC

syllable error would be S = s 3 = 0.941.

In 1921 Fletcher, based on results of J.Q. Stewart, generalized this two-

band (Eq. 2.8) case to K = 20 bands:

e = e1e2 · · · ek · · · e K , (2.12)

where e = 1 − s is the wideband average error and ek ≡ 1 − sk is the average error

in one of K bands. Formula 2.12 is the basis of the articulation index.

The K band case has never been formally tested, but was verified by working

out many examples, as discussed in Section 2.7. The number of bands K = 20 was

an empirical choice that was determined after many years of experimental testing.

Each of the bands was chosen to have an equal contribution to the articulation.

The average of the specific articulation index AIk over the 20 bands gives the total

articulation index AI, namely

AI = AIk ≡ 1
K

K∑

k=1

AIk, (2.13)

which is the generalization of Eq. 2.6 to K bands.

The number K = 20 was a compromise that probably depended on the

computation cost as much as anything. Since there were no computers, too many

bands was prohibitive with respect to computation. Fewer bands were insufficient.

Eventually Galt discovered that articulation bands, defined as having equal

articulation, were proportional to cochlear critical bands (French and Steinberg,
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FIGURE 2.3: Typical results for the French and Steinberg AI model, as defined by

Eqs. (2.12)–(2.16) and in Fig. 3.1. With permission from Allen (1994).

1947, p. 92). Each of these K articulation bands corresponds to approximately

1 mm along the basilar membrane (Fletcher, 1940, 1953, p. 172, Allen, 1996).

Assuming a cochlear critical band corresponds to about 40 hair cells (Allen, 1996),

and each hair cell is about 12 �m, one articulation band is about 2 critical bands

wide.5 When the articulation is normalized by the critical ratio, as a function of the

cochlear tonotopic axis, it was found that the articulation density is constant (per

critical band). This relation has been further quantified in Allen, 1996 in terms of

a plot of the ratio of the articulation bandwidth over the critical ratio, as shown in

Fig. 2.4.

5 As a cross check, Shera et al. (2002) estimated the human critical band to be � f ≈143 Hz at
2 kHz namely, QERB (2k Hz) ≡ 2000/� f ≈ 14. This bandwidth corresponds to 0.11 octaves,
given by log2[(2000 + 0.5� f )/(2000 − 0.5� f )]. The spatial extent corresponding to 0.11 may
be determined by multiplying by the slope of the human cochlear map, which is 5 mm/oct
(Greenwood, 1990). Thus the critical spread �x at 2 kHz is 0.5 mm.
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FIGURE 2.4: This figure shows the ratio of the articulation index bandwidth for constant

articulation to critical ratio. It was generated from the data given in Fletcher (1995, Fig.

177, p. 289) for D( f ) divided by the critical ratio κ( f ) as given in Fig. 121, p. 167. Since the

ratio is approximately constant over the frequency range from 300 Hz to 7.5 kHz, it shows

that the articulation bandwidth is proportional to the critical bandwidth. With permission

from Allen (1996).

2.2 FRENCH AND STEINBERG (1947)
In 1947 French and Steinberg provided a valuable extension of the formula for the

band errors by relating ek (the kth band probability of error) to the band SNR,

SN Rk , by the relation6

ek = emin
AIk (SNRk )/K , (2.14)

with emin being the minimum wideband error, under ideal conditions.

In each cochlear critical (i.e., articulation) band, the signal and noise is mea-

sured, and the long term ratio is computed as

snrk ≡ 1
σN (ωk)

[

1
T

T∑

t=1

σ 2
s (ωk, t)

]1/2

, (2.15)

where σs (ωk, t) is the short-term RMS of a speech frame and σN(ωk) is the noise

RMS, for frequency band k. The time duration of this frame impacts the definition

of the SNR, and this parameter must be chosen to be consistent with a cochlear

analysis of the speech signal. It seems that the best way to established this critical

6 This relation is related to Eq. (10a) of the 1947 French and Steinberg paper, but was first stated in
this form by Allen (1994).
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duration is to use a cochlear filter bank, which to this date is still an uncertain

quantity of human hearing (Allen, 1996; Shera et al., 2002). The standard engi-

neering method for calculating a perceptually relevant SNR was specified in 1940

by Dunn and White (1940), and refined by French and Steinberg (1947), Fletcher

and Galt (1950), and Kryter (1962a, 1962b). This may still be the best way, until a

new standard, based on a cochlear filter bank, is proposed, verified, and accepted.

Each band SNRk is converted to dB, is limited and normalized to a range

of −6 to 24 dB, and normalized by 30, thereby defining the specific articulation,

denoted AIk(SNRk):

AIk =






0 20 log10(snrk) < −6

20 log10(snrk)/30 −6 < 20 log10(snrk) < 24

1 24 < 20 log10(snrk).

. (2.16)

The threshold of speech perception is close to an SNRk of −6 dB (snrk = 0.5)

(French and Steinberg, 1947). The factor 30 in Eq. (2.16) results from the au-

dibility of speech over a 30 dB dynamic range in a given articulation band

(French and Steinberg, 1947, Fig. 4, p. 95). The right-hand side of this formula is

a restatement of the straight line approximation of Fig. 4 of French and Steinberg

(p. 95). The left-hand side is defined in their Fig. 21.

The basic idea of this formula is that when the SNRk is less than threshold

(i.e., −6 dB) within each cochlear critical band, the speech is undetectable. When

SNRk is greater than 24 dB, the noise has no effect on the intelligibility. Between

−6 and +24 dB the AIk is proportional to log(SNRk). This formula ignores the

upward spread of masking, and is not valid when this important effect is triggered,

for example when the speech is low pass filtered and amplified.

Merging the formula for the band errors Eq. (2.12) with that for the specific

AI Eq. (2.16), the total error may be related to the average specific AI, Eq. (2.13),

via Eq. (2.14), leading to

e = e1e2 · · · e K = emin
AI1/K emin

AI2/K · · · emin
AIK /K = emin

AI. (2.17)
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Since s = 1 − e , Eq. (2.10) follows, as required. Note that as SNRk → 30 dB in

every band, AI → 1 and s → smax. When SNRk → −6 dB in all the bands, AI → 0

and s → 0.7 This formula for s (AI) has been verified many times, for a wide variety

of conditions (see Section 2.7)

2.3 EFFECTS OF CHANCE AND CONTEXT
There are two major problems that the early Bell Labs studies did not address – in

fact they designed around these issues. The first is accounting for chance performance

(guessing), and the second is the role of context. A complete theory of HSR must

accurately account for their influence.

When dealing with chance and context one needs an understanding of

the basic aspects of Claude Shannon’s theory of information (Shannon, 1948).

Information theory deals with chance with the concept of entropy, and with con-

text effects via conditioned probability. To appreciate and understand these tools

intuitively we need a brief introduction to some practical issues in modeling articu-

lation and intelligibility with probability theory. In the next section three key topics

are discussed: entropy, channel capacity, and probability composition laws.

Chance performance plays its largest role at very low SNRs, where all of

the signal channels have error 1. Chance may be modeled as a side channel that

reduces the error to the maximum entropy condition. Context is modeled using

conditional probability, and is most important at high SNRs. When the rules of

chance dominate, context can play no role.

One unified way of seeing the relations of probability is through the multi-

dimensional diagram shown in Fig. 2.5. This figure gives us a visual and uniform

way of dealing with the probability relations that describe speech sound recogni-

tion. In this figure each channel is represented as a dimension. Because all possible

outcomes of any trial may be represented by a point in the space, the total volume

must be 1. In the example shown in the figure, binary outcomes are represented,

7 The symbol → is read “goes to.”
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s12 ≡ (1 − e1)(1 − e2)|s3=0

e1

e ≡ e1e2e3

FIGURE 2.5: This figure provides the conservation of probability interpretation of artic-

ulation error probability. It may be thought of as a 3d diagram, and it can be helpful, when

thinking about the AI model.

true or false, which represent the probability of an event being recognized, or not.

As an example, think of an experiment where three biased coins are tossed, and we

wish to represent the outcome of every trial (tossing each of the three coins, with

outcomes restricted to the eight corners of the cube

{δi , δk, δk} ≡ {1 ± 1, 1 ± 1, 1 ± 1}
2

. (2.18)

In this example, s1 might represent the probability of seeing heads (1) on the first

coin when a head was tossed, while e2 would then be the probability of seeing heads

on the second coin when a tail (0) was tossed.

As a more relevant example, the probability of not recognizing the speech

events in any of the cochlear filter channels is e , as given by Eq. (2.12), which

represents a 20-dimensional volume (which cannot be drawn, but we can imagine).
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A projection defines a conditional probability, such as P (x1, x2 | x3 = 0), as

shown by s12.

Most of what we have seen, and what we will need, for describing the prob-

ability relations in HSR, may be related back to Fig. 2.5.

2.3.1 Composition Laws
There is an important theme that threads all of the probability relations Eqs. ( 2.1)–

(2.12). In some cases the statistical models are formed from products of articulations,

such as Eq. (2.3) and Eq. (2.4), while in other cases they are formed from products

of articulation errors, such as in Eq. (2.8) and Eq. (2.12). What determines which

to use, the products of probability correct, as in Eq. (2.3), or probability of error, as

in Eq. (2.12)?8

In Fig. 2.5 we see an interpretation of these various products of probability

in terms of a volume in probability space. If the entire space is normalized to have

a volume of 1, then each of the various types of products defines a subvolume. The

sum of all of these subvolumes adds to 1, leading to the view of probability as a

conservation law.

One way to describe these rules intuitively is in terms of sequential versus par-

allel processing. When the processing is sequential, one must multiply articulations,

and when the processing is parallel, one must multiply articulation errors.

Sequential processing: When one needs to recognize every member of a string

having no context we shall call this sequential processing: all the elements must be

correct for the result to be correct. Sequential processing always drives the score

down (a single error makes the entire result wrong).

An example of sequential processing is the case where all the phones must be

recognized to successfully recognize the composite MaxEnt word. Context cannot

8 R. H. Galt raises this question in his notebooks (Galt, 1946) where he points to Fry’s interesting
book on Probability Theory and The first and second law of composition of probability (Fry, 1928).
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help in this case since the phones are independently drawn, and all sequential partial

events must be recognized to recognize the compound event. This requires that Pc

be given by a product of articulations rule, as in Eq. (2.3).

If all the phones are at the chance level, then the syllable must be at chance.

Thus probability correct for sequential processing can never go to zero, because

that would require a Pc that is below chance.

Parallel processing: When one only needs to recognize a single member of many

elements, we shall call this parallel processing. Thus the listener has many (i.e.,

parallel) opportunities to get the correct answer. A primary example is Eq. (2.12)

corresponding to the parallel processing via K different independent channels. As

a second example, if there is one unique sound (i.e., a vowel) that distinguishes two

words, or a salient word in a sentence that is identified, then the result is scored

correct, and parallel processing applies. A third example might be

Pc ≡ 1 − (1 − pc )k, (2.19)

where pc is the probability correct of k identical independent parallel channels.

One problem with Eq. (2.19) is that it does not account for chance guessing.

A small modification, by adding a chance channel, can fix this. If 1 out of N possi-

bilities are being considered (as in close set testing), and the sounds are uniformly

chosen, then

Pc = 1 −
(

1 − 1
N

)

(1 − pc )k . (2.20)

This model approaches chance level (Pc → 1/N ) as pc → 0, rather than zero.

For parallel processing the error may be zero, corresponding to the case where

the signal is clearly detectable in a single channel. However it is more likely that

the coincidence of many channels define each event, implying a nonzero error for

any single channel. When many channel error probabilities are multiplied together,

the total error probability may become vanishingly small. For example, if each of
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10 independent contiguous channels have an error probability of 0.5 (50%), then

the probability of error of the group estimate will be 0.510 ≈ 10−3 (0.1%).

An important (and historically the first) example of parallel processing is

Eq. (2.8). In Eq. (2.12) many (even most) of the channels may have no infor-

mation, and thus have an error approaching 1. If one channel gives an error free

signal (e.g., if e3 = 0), then that single channel dominates the final result.

While it is trivially obvious, it is worth emphasizing, that when one takes a

number that is less than one, to a power that is greater than one, the result becomes

smaller. This means that sequential processing [i.e., Eq. (2.4) or Eq. (2.3)] reduces

the score (P k
c < Pc , k > 1), while parallel processing [i.e., Eq. (2.8) or Eq. (2.12)]

increases the score (P j
e < Pe , j > 1).

Boothroyd (Boothroyd, 1978; Boothroyd and Nittrouer, 1988) addresses the

sequential vs parallel processing question in terms of two rules. When the artic-

ulations are multiplied, Boothroyd calls it “elements of wholes → wholes,” which

requires what he calls a “ j-factor,” as in

Pc ≡ p j
c . (2.21)

When articulation errors are multiplied, he views the situation as describing a

mapping from “no context → context,” which requires what he calls a “k-factor” as

in Eq. (2.19). We shall describe Boothroyd’s approach in detail in Section 3.1.

2.4 MILLER ET AL. CIRCA 1947–2001
In this section we shall deal with the important issues of entropy and chance, plus

some restricted issues regarding context. George A. Miller was the first to explore

the use of information theory in both HSR and human language processing (HLP).

Miller and his colleagues raised and clarified these issues in some key speech papers.

In one classic study Miller was the first to use closed-sets to control the entropy of the

listening task. By doing this, it was possible to study the importance of chance as

an independent variable. In a second classic study, he quantified the error patterns

of the HSR channel, by measuring the confusion matrix for consonants. Following
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an in-depth review of this work, the data will be modeled using the tools of the

articulation index, using parallel and sequential models.

The articulation index theory was developed by the telephone company,

for network characterization. It was largely unknown outside AT&T until World

War II, when voice communication became a matter of life and death.9 Bell Labs

was asked to participate in solving these communications problems, so Fletcher

and his team went to Harvard to provide support. This meeting, of 31 people at

Harvard on June 19, 1942, is documented in Galt’s sixteenth notebook, starting on

page 158 (Rankovic and Allen, 2000), and in the personal notes of Stevens about

this meeting (Rankovic, personal communication).

The war effort involved teams at both Bell Labs and the Harvard Cruft

Acoustics Lab, and one of the key players was a young man by the name of George

Miller. Miller’s contribution to our understanding of speech intelligibility was sec-

ond to none. Following the war he wrote an interesting review paper summarizing

the AI method (Miller, 1947a). Next he attempted to integrate Shannon’s theory

of information with Fletcher et al.’s articulation studies. These studies resulted in a

book Language and communication (Miller, 1951), which reviews what was known

at that time about speech intelligibility. In the same year, Miller et al. published a

classic paper on the importance of the size of the set of sounds (i.e., the set entropy)

to syllable classification (Miller et al., 1951). He had (and still has) a good intuition

for rooting out the problems, and drawing attention to them. His work during the

war, and later with Heise and Lichten, are wonderful examples of this.

Closed- verses open-set testing: Although George Campbell (who also worked

for AT&T) was the first to use the closed-set test (Campbell, 1910), all the subsequent

Bell Labs work consisted of open-set tests, where chance is negligible (i.e., less than

2−11). MaxEnt syllables were used to avoid word-context bias. With such tests

9 The first application outside of the Bell System was pilot-navigator communications
(Miller et al., 1946; Miller and Mitchell, 1947).
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every phone must be identified, and therefore sequential processing models apply.

This is a maximum entropy test, implying a greater testing efficiency.

If only meaningful words are used in the open-set test, one unique key

element (e.g., a salient sound) would be enough to narrow the choices, meaning

parallel processing would then play a role, making the analysis difficult, or even

impossible.

Open-set tests are quite difficult however, and are not particularly useful in

the clinic, since they require highly trained person.

The essence of the closed-set test is that the subject has the full knowledge

of the choices, before they are asked to make their selection. By explicitly show-

ing the subject the possible choices, meaningful and MaxEnt-words are rendered

equivalent. Thus the closed-sets task significantly reduces the role of word context.

Assuming equally distributed choices, chance is given by the inverse of the number

of choices; thus it is known, and is typically significant.

The down side of the closed-set task comes when meaningful words are

exclusively used since the degrees of freedom (the number of relevant sounds per

word) is unknown. Thus parallel processing must play a role, and modeling the

results is more complex. As the SNR is increased, the number of distinct elements

may be unknown. This means that the scoring will be difficult. However because

the set size is small, it may not be impossible, depending on the nature of the corpus.

Examples are useful to make this point.

Suppose your ask the subject to identify one of two words [cat, dog], in a

closed-set task (the two words are known in advance). A coin is flipped to pick the

word, which is then bandpass filtered, and masked with noise, such that it is hardly

recognizable. Chance is 0.5. With such a closed set task (one of two words), you will

only need to distinguish the vowel /a/ versus /o/. Alternatively if you can hear the

high frequency release of the /t/ of cat, you will get the entire word right. Thus there

are multiple strategies for guessing the word. This leads to modeling complications.

If the word cat were presented in an open-set task, you must identify each of

the three sounds. If the word /cat/ were replaced with the meaningless CVC /dat/,
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the scores would likely not change, since all the audible cues would approximately

remain the same.

2.4.1 Miller et al. (1951)
This study was the first to quantify task entropy using close-set testing. Starting

from a master list of N ≈ 2048 CVC words,10 seven types of lists, of 2, 4, 8, 16,

32, 256, and 1000 words were prepared in advance. Denoted these lists Listn,l ,

containing 2n words each, with n = 1, 2,. . . ,10. A block of trials was a run from

one of these List n,l , where l = 1, 2, 3,. . . , L. For example, when n = 4, the lists

were 24 = 16 words long. There are 2048 × 2047 × 2046 × 2045 such possible

lists of 16 words. For the case of n = 11, one list includes all the words.

A word was chosen at random from a randomly chosen list, and 7 kHz band-

width noise was added to the speech electrical waveform. The 1951 Miller et al.

study used a wideband measure of the speech based on volts peak across the ear-

phone. The bandwidth of the speech plus noise was determined by the earphones,

to be about 4.5 kHz. The values of SNR chosen were between −21 and +18 dB

in 3 dB steps. The subjects were shown the chosen list, and after listening to the

processed sample, they identified one word on the list that most closely matched

what they heard. After a block of trials at each value of n, the average score was

computed for that block. This process was continued until sufficient data at each

value of n and SNR had been collected.

The Miller et al. experimental results, Pc (SNR,H), are summarized in

Fig. 2.6. The data are re-plotted in a different format in Fig. 2.7, where the en-

tropy of the task H is the abscissa and the ordinate is percent correct (100 × Pc ),

plotted on a log scale, with SNR as the parameter. Chance is bounded by the line

labeled 2−H (since the words were independently chosen from the list, without bias)

corresponding to an SNR of about −21 dB.

10 Some typical words are bat, kiss, all, void, root. The list was actually 1000 words, but it’s effective
size was about 2000, Personal communication, G. Miller (2000).
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The chart relates the entropy H ≡ log2(N ) (in bits/task) and the SNR for W(H, SNR),

with the SNR as a parameter. Two ASR scores for the Wall Street Journal (WSJ) task of

(Lippmann, 1996) have been added for reference.
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Below about −21 dB SNR, the subjects heard only noise. At an SNR of

−18 dB, the subjects perform slightly above chance for the 3–5 (i.e., 8–32 word

lists) bit tasks, and the performance is maximum (relative to chance) for H =
4 (16 words). At this SNR it is likely that only the CVC’s centered vowel can be

heard. There are about 20 centered vowels.11 Since the number of words (16) is less

than the number of vowels (20), the number of repeated vowels, given two words,

will be small, resulting in a greatly increased chance, given the vowel, for guessing

the word.

For comparison, two points from an ASR experiment on the Wall Street

Journal task have been added to the figure (Lippmann, 1996). These ASR results

are much worse than the Miller et al. HSR measures at the same conditions. Note

the hypersensitivity to noise, where a slight change in SNR results in a dramatic

drop in the score, from 60% in quiet to 21% at +22 dB SNR. A noise of this small

magnitude would have no affect on HSR.

Many of the key issues of human speech recognition are captured by

MHL51’s experiment. This figure summarizes the trade-off between entropy and

SNR and chance performance in a rather nice way.

The use of closed-set testing, first explored by this experiment, fundamentally

changed the science of speech articulation testing. First, the entropy of the task

is controlled. Second, with closed–set testing, chance of correct identification is

known (e.g., Pc (chance) = 2−H). Knowing the chance response should allow one

to more precisely model the results. However, before we can make such models we

must know the distribution of the number of common Cs and Vs on the list, since

this distribution will determine Pc (SNR). For example, for the case of two words,

if all the Cs and Vs differ (e.g., cat vs. dog) the result be be very different from the

case were only the vowel is varied (e.g., cat vs. cut).

In the open-set Bell studies, the subjects were necessarily highly trained,

and they needed to know phonetic symbols. Much less practice is required for the

11 Based on an early Bell Labs survey, as summarized by Fletcher, the vowels have an entropy of
about 4.3 bits (Allen, 1994).
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subjects in the MHL51 closed set task, for the same accuracy, when meaningful

words are used. In my view, when done properly, this type of testing should provide

results that are as accurate as open-set tests using MaxEnt-words, but much easier to

administrate, and much broader in their ability to evaluate speech sound perception.

Coupled with the use of computers, such tests could become quite useful today.

Modeling closed set testing (MHL51): As the entropy of the list increases from

1 bit to 11, the effective number of phones that cue the word must change from 1

to 3 (assuming CVC words). This must show up in a change of the slope of the

log-error curve of Pc (SNR,H), after correcting for chance. This changing slope

effect may be seen in Fig. 2.8 where

Pe (SNR,H) = 1 − Pc (SNR,H)

1 − 2−H (2.22)

is shown, with the entropy H as the parameter.

At higher SNR values, most of the consonants are heard. The end result will

be a large performance increase in the closed-set PI functions asHdecreases, as there

will be many cues available, and a decreasing number of sounds to chose from. For

H ≤ 5, all the curves above 0 dB SNR saturate, showing a “ceiling effect.” Another

way of saying this is that for 32 or less words, with an SNR of greater than −6 dB,

human performance is close to perfect. In this region, performance will be limited

by secondary factors such as production errors, attention, motivation, and memory.

Because of the orthographic side information, only one unique combination of

sounds must be identified to get the entire word right.

The dashed curve in Fig. 2.8 is the cube of the H = 5 log-error curve.

It almost matches the H = 1 curve. This shows that, at least approximately, the

degrees of freedom in the 32 word case are about three times greater than in the

2 word case. This is is what one would expect to happen, for CVC sounds having

3 degrees of freedom, as shown by Eq. (2.3). This parallel processing (k-factor)
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curve, as discussed in the text.

model nicely characterizes the H = 1 . . . 5 data, since

(
1 − Pc (SNR, 1)

1 − 2−1

)

≈
(

1 − Pc (SNR, 5)
1 − 2−5

)3

(2.23)

A parallel-processing model is further explored in Fig. 2.9. By using log-log

coordinates the k factor shows up as a change in slope. If the lines are straight, as

they are up toH = 4, the k factor explains the data. The model works approximately

for H ≤ 7. This model does not explain the H = 8 and H = 10.5 bit data, but for

those data the lists were too long for the subjects to use them, and therefore word

context (i.e., intelligibility) likely played an important role in those cases.

A second context result is for the case of the digits, as shown in Fig. 2.10.

This data shows that the parallel model works for the digits using a power of 1.5,

as discussed in the figure caption.

One thing these collective results do not tell us is how humans process the

speech signal events to extract events. The first quantitative insight into that prob-

lem was provided by Miller and Nicely (1955).
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chance, namely if P ch
e (SNR,H) ≡ [1 − Pc (SNR,H)]/(1 − 2−H), then this plot is P ch

e (H)

as a function of P ch
e (H = 4). To the extent that the lines are straight (they are not for

H = 5, 7), one curve is a power law of the other. Namely a parallel processing (“k-factor”)

model does a reasonable job of accounting for the H = 1 − 4, but less so for H = 5 − 7.

For the higher entropy cases, something else is going on.

2.4.2 Miller and Nicely (1955)
A few years later George Miller and Patricia Nicely published one of the most

insightful and influential HSR papers to date. In many ways this is an extremely

limited study. The five participants were American born women, who likely had a

uniform north American dialect. Four served as listeners, with a randomly chosen

one of the five serving as the live talker (recordings or phonograph records of the

speech were not used, as was the case for the Bell studies). The database, was

entirely CV speech, with a single vowel, always the /a/ as in the word father.

The results of this study clearly demonstrate what one might light-heartedly

call “the quantum mechanics” of speech perception, i.e., that phone recognition is

grounded on hierarchical categorical discriminations. This conclusion follows from

an analysis of the Miller Nicely confusion data.



ARTICULATION 49

−20 −15 −10 −5 0
0

50

100

%
 c

or
re

ct

SNR

10 monos (blue) and 10 digits (green) vs. SNR

10 monosyllables
Digits
23

24

0 20 40 60 80 100
0

50

100

Monos (% correct)

D
ig

its
 (

%
 c

or
re

ct
)

Effect of Digit context on score

Digits
1−[1−P

c
(snr,H=3.3)]3/2

FIGURE 2.10: In the upper panel the 10-digit PI function is compared to the 8 and 16

word case, shown by the dashed curves. The solid curve, between the dashed curves, shows

the PI(SNR) function for the 10 monosyllable case, determined by a linear interpolation

between the 8 and 16 word cases. The second solid curve, above the dashed curves, rep-

resents the 10 digits. In the lower panel the digit PI function is compared to the 10-digit

monosyllables. This shows a slight lifting of the digits over the 10 word monosyllables.

The digits are then modeled with a parallel processing model having a k-factor of k = 3/2

[Eq. (2.19)], as shown by the dashed line. The model might fit better at low snr values if

the mono’s Pc (SNR,H) values were first corrected for chance, and then reapply the chance

model after taking the error to the 1.5 power. This correction was not verified.

Representationsoftheconfusionmatrix(CM): Fig. 2.11 shows a typical Miller–

Nicely (MN55) consonant-vowel (CV) confusion matrix or count matrix CM for

wideband speech (0.2–6.5 kHz), at a SNR of −6 dB (Miller and Nicely, 1955,

Table III). The 16 consonants were presented along with the vowel /a/ as in father

(i.e., the first three sounds were [/pa/, /ta/, /ka/]). After hearing one of the 16 CV

sounds as labeled by the first column, the consonant that was reported is given as

labeled along the top row. This array of numbers form the basic CM, denoted Cs ,h ,

where integer indices s and h (i.e., “spoken” and “heard”) each run between 1 and

16. For example, /pa/ was spoken 230 times (the sum of the counts in the first row),
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FIGURE 2.11: Typical Miller–Nicely confusion (or count) matrix (CM) C, from

Table III at −6 dB SNR. Each entry in the matrix Cs ,h is the subject response count.

The rows correspond to the spoken CVs, each row representing a different consonant, from

s = 1, . . . , 16. The columns correspond to the heard CVs, each column representing a

different consonant, from h = 1, . . . , 16. The common vowel /a/, as in father, was used

throughout. When the 16 consonants are ordered as shown, the count matrix shows a

“block-symmetric” partitioning in the consonant confusions. In this matrix there are three

main blocks delineated by the dashed lines, corresponding to UNVOICED, VOICED,

and NASAL. Within the VOICED and UNVOICED subgroups, there are two additional

symmetric blocks, corresponding to AFFRICATION and DURATION, also delineated

with dashed lines.

and was reported heard 80 times (C1,1), while/ta/ was reported 43 times (C1,2). For

Table III the mean row count was 250, with a standard deviation of 21 counts.

When the sounds are ordered as shown in Fig. 2.11, they form groups,

identified in terms of hierarchical clusters of articulatory features. For example, the

first group of sounds 1–7 correspond to UNVOICED, group 8–14 are VOICED,

and [15,16] are NASAL and VOICED.

At an SNR of −6 dB, the intraconfusions (within a group) are much greater

than the inter-confusions (between groups). For example, members of the group 1–7
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(the UNVOICED sounds) are much more likely to be confused among themselves,

than between the NONNASAL–VOICED sounds (8–14), or the NASAL sounds

(15,16). The NASAL are confused with each other, but rarely with any of the other

sounds 1–14. Two of the groups [sounds (1–7) and (8–14)] form subclusters.

A major conclusions of the Miller–Nicely paper is

This breakdown of the confusion matrix into five smaller matrices . . . is

equivalent to . . . five communication channels

The term communication channels is being used in the Shannon sense. A Shannon

channel is a “digital pipe” that introduces classification errors (i.e., confusions) due

to noise. The 1-bit asymmetric channel may be characterized by a matrix of the form

0 1

0 p 1 − p

1 1 − q q

(2.24)

where 1 − p and 1 − q are the probabilities of the binary transmission errors,

corresponding to a 0 or a 1. It is p(SNR) that specifies the relation between the

sound classifications errors and the analog SNR. The articulation for this example

matrix would be Pc (SNR, 1) = (p + q )/2. The 1-bit symmetric channel corresponds

to the case of q = p.

Based on the block errors in the CM (Fig. 2.11), Miller and Nicely suggested

that it was the misperception of basic speech features that account for the errors.

They offered the feature classification scheme defined in Fig. 2.12. In this chart

each consonant has a unique binary [log2(3) bits in the case of place] representation.

To the extent that the CM is block-symmetric, the events identified in

Fig. 2.11 seem to represent independent communication channels. More precisely,

Miller and Nicely say.

the impressive thing to us was that . . . the [binary] features were per-

ceived almost independently of one another.
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FIGURE 2.12: This figure shows the 5-event classification scheme of Miller–Nicely,

Table XIX. Each of the sounds was assigned a binary event (in the case of “Place,” the

scheme required more than 1 bit). Today the term feature is widely used, and means

many things. For this reason the term event is preferred when referring to Miller–Nicely’s

“features.”

The MN55 data has been the inspiration for a large number of studies.

The sound grouping has been studied using multidimensional scaling, which has

generally failed in providing a robust method for finding perceptually relevant

groups of sounds, as discussed by Wang and Bilger (1973). Until recently this

grouping problem has remained unsolved. A solution, developed while writing this

monograph, has now been proposed (Allen, 2005).

2.4.3 Event Classifications
The labels on the features of Fig. 2.12 are production based (i.e., Voicing, Nasality,

Affrication, etc.), while in fact the features are based entirely on perceptual results.

Would it not be better to initially ignore the production based labels and make them

abstract quantities? While the phone classes which form diagonal blocks in the AM

are highly correlated with production quantities, in fact they are psychophysically

derived features (i.e., events).
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Giving the events production based names is misleading, if not down right

confusing. For example, what does the label “Voicing” really mean in this context?

It is some derived quantity that psychophysically covaries with what we think of as

voicing. In fact we do not actually know how the perceptual term “voicing” should

be defined (Sinex et al., 1991). A common definition is the time duration between

the onset of the speech sound and the onset of glottal vibration. If this were the

correct definition, then how could we decode voicing in the case of whispered

speech? This problem has been explored at the auditory nerve level by Stevens and

Wickesberg (1999, 2002).

Furthermore the MN55 articulatory feature classification scheme shown in

Fig. 2.12 is seriously flawed. For example, the NASAL group are VOICED in the

same sense as those labeled VOICED; however, the two clearly form a distinct

clusters. There is no obvious simple articulatory label for sounds 8–14.

Groups systematically depend on the SNR, and groups remain unidentified

by this scheme. Using the example of Fig. 2.11 (MN55 Table III), [/ba/, /va/, /Da/]

form a group that is distinct from the nonfricative voiced subgroup. An improved

order for sounds 8–14 would be [/ba/, /va/, /Da/], [/za/, /Za/, /da/, /ga/]. This

example fundamentally breaks the MN55 articulatory feature classification scheme.

In fact, it is likely that the feature space cannot be strictly articulatory based.

The events identified by Miller and Nicely are appropriate for the simple

set of CVs that they studied, but are hardly inclusive. With other sounds, and for

sounds from other languages, many other features will be necessary. Vowels have

not been considered in any of these studies. The studies discussed in this review

only represent a significant tip of a very large iceberg.

The data in the CM represents a psychological subject response, and there-

fore needs to be represented in terms of psychological variables rather than phys-

ical (production) measures, as defined by articulatory features. This could have

been the role of distinctive features, had they been so defined. Unfortunately there

seems to be some confusions in the literature as to the precise definition of a

distinctive feature. For example, are distinctive features production or perception

quantities?
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To avoid this confusion, the term event is used when referring to perceptual

features. Since Miller and Nicely’s confusion data are based on perception, they must

described events. The precise nature of these events may be explored by studying the

15 plots Si, j , i �= j , as shown in the lower-left panel of Fig. 2.13 for the case of i = 2.

2.4.4 The Transformation from CM to AM
In this section we transform the CM into an articulation matrix (AM), symmetrize

the AM, and then re-express the SNR in terms of an AI. These transformations

allow us to model the AM, giving incite into the detailed nature of the hierarchical

categorical discriminations between the consonants. Much of the material from

this section was extracted and independently published (Allen, 2005). While the

two presentations are similar, they are not the same.

When normalized as a probability, the consonant CM is transformed to an

articulation matrix (AM), denoted A (script-A), with elements

As ,h ≡ Cs ,h
∑

h Cs ,h
. (2.25)

This normalization, to an equal probability for each row, is justified because of the

small standard deviation of the row sums (i.e., 250 ± 21).

The AM is the empirical conditional probability Pc (h|s ) of reporting sound

h after speaking sound s , namely

As ,h ≡ Pc (h|s ) (2.26)

for integer labels s , h (i.e., spoken, heard). In some sense As ,h for s �= h is an error

probability, since it is the probability of reporting the wrong sounds h after hearing

spoken sound s �= h .

Fig. 2.13 shows the probability of responding that the sound h = 1, . . . , 16

was reported, following speaking /ta/ (s = 2), as a function of the wideband

SNR. The upper-left panel shows the probability A2,h (SNR) of each heard sound

(h = 1, . . . , 16), given /ta/ was spoken. The upper-right panel shows the
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FIGURE 2.13: This figure shows Miller and Nicely’s 1955 wideband row-normalized

confusion matrix data As ,h (SNR) [Eq. (2.25)] for the sound /ta/ (sound 2) from MN55

Tables I–IV, as a function of the SNR. The upper-left panel is a plot of the second row of the

articulation matrix [A2,h (SNR), h = 1, . . . , 16, corresponding to /ta/ spoken], while the

upper-right panel is a plot of the second column [As ,2(SNR), corresponding to /ta/ heard].

The matrix is not perfectly symmetric (A �= At), which explains the small differences

between these two plots. The lower-left panel is the symmetric form of the articulation

matrix given by Eq. (2.27), which is the average of A and its transpose At . The lower-right

panel is the skew-symmetric form A [Eq. (2.28)]. The horizontal dashed line in each figure

shows chance performance (i.e., 1/16).

probability As ,2 of each sound spoken (s = 1, . . . , 16), given that /ta/ was heard.

The curve that rises to 1 is the probability of correctly reporting /ta/ (A2,2(SNR)),

given that it was spoken (left), or heard (right). The solid-thick curve is the total

probability of error e2(SNR) ≡ 1 − A2,2(SNR) of not reporting /ta/, given that it

was spoken (left) or heard (right).
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Symmetric and skew-symmetric decompositions: The lower-left panel of

Fig. 2.13 is a plot of the second row S2, j of the symmetric form of the AM, defined as

S ≡ 1
2

(
A + At) , (2.27)

where At is the transpose of A, while the lower-right panel is the second row of

Ai, j of the skew-symmetric form of the matrix, defined as

A ≡ 1
2

(
A − At) . (2.28)

It appears that the sampling error (statistical uncertainty) in the measure-

ments due to the sample size is about 0.5% (0.005), which is where the measure-

ments become scattered. This variability is determined by many factors, including

the number of trials per sound, the smoothing provided by the symmetric trans-

formation, the consistency of the talker, and the mental concentration and number

of the observers (four in this case).

From the lower-right panel, it is clear that the AM is close to symmetric,

since the skew-symmetric terms are small. A few terms of A2,h (SNR) are as large

as 5%, but most are less than 1%. Since the MN55 data are close to symmetric, it is

reasonable to force the symmetry, and then to study S and A separately, which is the

approach taken here. Note that S is slightly smoother than A, since each element

As ,h is the average of two similar terms, Ah,s and As ,h . Using the symmetric form

simplifies the analysis of the matrix and gives us access to the skew-symmetric form.

The interpretation of the skew-symmetric form is quite different from that

of the symmetric form, The most likely explanation of the skew-symmetric matrix

is that the subjects have a bias for one sound over another, and are therefore more

likely to report the consonant for which they have the bias (Goldstein, 1980).12

Plotting the symmetric data S(SNR) as a function of SNR, as shown in

Fig. 2.13, provides a concise yet comprehensive summary of the entire set of mea-

surements, and shows the hierarchical grouping, without a need to order the sounds.

In the next section it is shown that if Si, j is described as a function of the AI, rather

12 We have recently discovered that bias is not the explanation.



ARTICULATION 57

than the SNR, the same data may be quantitatively modeled, and the important

effects of chance may be accounted for.

How can one make order (i.e., gain understanding) of the CM grouping, as

shown in Fig. 2.11? The confusion matrix may be studied by forming a cascade

of transformations, with the goal of studying the natural structure in the error

patterns. Three transformations are used. The first transformation (T1) is to find

the AI from the SNR. The second (T2) is to normalize the CM so that its row

sums are 1. The third transformation (T3) is to express the normalized matrix as

the sum of symmetric and skew-symmetric parts.

• T1 (Miller Nicely and the AI): To relate the Miller Nicely data to the

Fletcher AI,A(SNR) was computed, as follows. Since the ratio of the wide-

band VU-level of the speech and of the noise are know (−18 to +12 dB),

given the RMS spectrum of the speech (see Fig. 2.15) and of the noise

(uniform from 0.1 to 9.5 kHz), the spectral levels in articulation bands

may be computed, as shown in Fig. 2.16. From the ratio of these two

articulation band spectra, A(SNR) is easily found, from Eq. (2.13). The

resulting A(SNR) was found to vary from 0 to 0.6 as the SNR is varied

from −18 to +12 dB.

• T2 (Row normalization): The second transformation is to normalize

the rows of the confusion (or Count) matrix Cr,c (SNR) by the row-

sum, thereby converting the confusion matrix into an empirical proba-

bility measure Ar,c (SNR) [i.e., an articulation matrix (AM)] as show by

Eq. (2.25). The resulting As ,h (SNR) is a matrix of PI functions, with

row index s = 1, 2, . . . , 16 indexing the stimuli spoken and column index

h = 1, 2, . . . , 16 indexing the responses heard.

• T3 (Decomposition): A third transformation is to form the symmetric13

and skew symmetric components from matrix A(SNR). The symmetric

13 The two transformations, normalization and symmetry, interact, so it is necessary to iterate this
pair of transformations to convergence. For the tables provided by Miller Nicely, this iteration
converges rapidly, as the matrix is close to symmetric to start.
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form of the AM is given by Eq. (2.27), while the skew-symmetric form is

defined by Eq. (2.28).

There is an interaction between the row normalization [Eq. (2.25)], and the

symmetry transformation Eq. (2.27), which requires that the row-normalization

and symmetric computations be iterated. This iteration always converges to the

same result, and is always stable for all of the MN55 tables. An entry of “1” in

C represents a single vote for the same utterance, from 4 listeners who heard that

utterance. All 1’s were deleted from the matrix before computing S, which made

the functions much smoother as a function of SNR at very low probabilities. Once

matrix S has been determined, A is computed from

A = A − S. (2.29)

2.4.5 Hierarchical Clusters
Sound clustering in the CM was used by MN55 as the basis for arguing that the

sounds break down into distinct groups, which MN55 identified as five discrete

articulatory features, and called these as Voicing, Nasality, Affrication, Duration, and

Place.

Each symbol in Fig. 2.13 labels a different articulatory feature. Sounds 1–3

(/pa/, /ta/, /ka/) are shown as circles, 4–7 (/fa/, /Ta/, /sa/, /Sa/) triangles, 8–10 (/ba/,

/da/, /ga/) squares, 11–14 (/va/, /Da/, /za/, /Za/) upside-down triangles, while the

nasal sounds 14 and 15 (/ma/, /na/) are labeled by 5-pointed stars.

The hierarchical clusters are seen in Sr,c (SNR) as groups that peel away

as the SNR (or AI in the case of Fig. 2.21) increases. The symmetric /ta/ data

shown in the lower-left panel of Fig. 2.13, is a great example: First all the voiced

sounds dramatically drop, starting from chance, as the SNR is raised. Next the

unvoiced-fricatives /fa/, /Ta/, /sa/, and /Sa/ (triangles) peel off, after very slightly

rising above chance at −12 dB SNR. Finally the two main competitors to /ta/ (/pa/

and /ka/) peak around −6 dB SNR, and then fall dramatically, as /ta/ is clearly

identified at 0 dB SNR and above. In the lower-left panel /pa/, /ta/, and /ka/ (©)

are statistically indistinguishable below −6 dB and approach chance identification
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of 1/16 at −18 dB. Above about −6 dB, /ta/ separates and the identification

approaches 1, while the confusions with the other two sounds (/pa/ and /ka/) reach a

maximum of about a 25% score, and then drop monotonically, as the SNR increases.

The MN55 sounds 4–7 (/fa/, /Ta/, /sa/, and /Sa/), like sounds 1–3 (/pa/,

/ta/, /ka/), also form a group, as may be seen in the lower-left panel, labeled by �.

This group also starts from chance identification (6.25%), rises slightly to a score of

about 7%, at −12dB, and then monotonically drops at a slightly greater rate than

sounds 1 and 3 (symbols ©).

The remaining sounds 8–16, labeled by the remaining symbols, which show

no rise in performance; rather they steeply drop, from the chance level.

At the lowest SNR of −18 dB, the elements in the symmetric form of the AM

approach chance performance, which for MN55 is 1/16, corresponding to closed-

set guessing. Extrapolating the data of Fig. 2.13, chance performance corresponds

to about −21 dB SNR.

Based on the clustering seen in the AM (e.g., MN55 Tables II and III), it was

concluded by MN55 that the three sounds /ta/, /pa/, and /ka/ might be thought

of as one group. These three sounds form the unvoiced, nonnasal, nonaffricate,

low-duration group, having three different values of place. The details of these

groupings depend on the SNR. A detailed analysis of these clusters show that the

MN55 articulatory features (production feature set) do not always correspond to the

events (perceptual feature set).

In fact it would be surprising if it turned out any other way, given that

production and perception are fundamentally different things. The details of a

scheme that will allow us to make such an analysis of the optimal perceptual feature

set, forms the remainder of this section.

2.4.6 Total Error Decomposition
The solid-thick curve in the top two and bottom-left panels of Fig. 2.13 are graphs

of the total error for /ta/

e2(SNR) ≡ 1 − S2,2(SNR). (2.30)
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Because each row of Si, j has been normalized so that it sums to 1, the total error

for the ith sound is also the row sum of the 15 off-diagonal ( j �= i) elements,

namely

e i (SNR) =
∑

∀ j �=i

Si, j (SNR). (2.31)

Since each error term is nonnegative, e i must bound each individual confusion Si, j .

For the data of Fig. 2.13, lower-left, the other two circle curves (/pa/ and /ka/),

which compete with /ta/, and thereby form a three-group, are nearly identical.

All other error terms are much smaller. Thus the solid-thick curve, e2(SNR), is

approximately twice the size of the curves for /pa/ and /ka/. All the off diagonal

terms go to zero at +12 dB SNR so for that one point e2 = S2, j , a fluke of the

small-number statistics.

Equation (2.31) will turn out to be a key decomposition that allows us to

break the total error down into its parts. The total error for the ith sound is linearly

decomposed by the off-diagonal errors of the AM. The sounds that are confusable

have larger error, and the sounds from different groups contribute, down to the

chance level. This is a natural decomposition of the total error into its confusions,

that can help us understand the AI predictions in much greater detail.

For example, why does the probability of identification of sounds 1–3 and 4–7

increase even when these sounds are not spoken? The initial rise for the two sound groups

follows from the increase in chance performance due to the decreased entropy, which

follows from the reduced size of the group. This conclusion follows naturally from

Eq. (2.31). As the SNR increases, the size of the group exponentially decreases.

As the number of alternatives in a closed-set task decreases, the probability

of guessing increases. Given 2 alternatives, chance is 1/2; given 16, chance is 1/16.

Thus grouping and the rise due to the confusion within the group, are intimately

tied together. In the same manner, as the SNR rises from −18 to −12, the MN55

sounds 4–16 are perceptually ruled out, increasing chance performance for sounds

1–3 from 1/16 to 1/3.
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FIGURE 2.14: Plots of the symmetric AM corresponding to the nasals /ma/ and /na/.

The curve that rises to 1 is Si,i (SNR) for i = 15 (left) and i = 16 (right). The solid fat

curve in each panel is e i [Eq. (2.31)]. The other curves represent confusions Si, j (SNR) for

the remaining sounds j = 1, . . . , 14.

It seems obvious that the reduced entropy with SNR results from events

(perceptual features) common to each group. No better example of this effect is the

case of the nasals, which form a group of 2 in the MN55 data set.

The nasals: In Fig. 2.14 Si, j (SNR) for i = 15, 16, corresponding to /ma/ and

/na/, are presented. The two nasal sounds are clearly separated from all the other

sounds, even at −18 dB SNR. As the SNR increases, the scores rise to ≈25%,

peaking at or near −12 dB SNR, following with the identification rising and the

confusion dramatically falling for SNRs at and above −6 dB.

Sounds 1–14 are solidly rejected, even at −18 dB. These scores exponentially

drop as the SNR is increased. There is a slight (visual) hint of a rise of a few sounds

for the case of /ma/, in some of the rejected sounds in the left panel, and some

corresponding grouping, but the effect is small and it would be difficult to tease

out. The rejected sounds in the right panel do not show any obvious grouping effect.

The subjects can clearly distinguish the two nasal sounds (sounds 15,16)

from all the others (sounds 1–14), even at the lowest SNR of −18 dB; however,

they cannot distinguish between them until the SNR is greater than −12 dB.

The subjects know the sound they hear is NASAL, but the question is, which
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one? This identification of event-NASAL leads to a significant increase in chance

performance for SNRs between −18 and −6 dB, from 1/16 to 1/2.

One may also see this effect in the raw count data at −18 dB, where the

confusions are approaching equal chance levels. For example, in MN55 Table I,

the raw counts are [25, 28; 33, 32]. At −12 dB, /ma/ and /na/ are significantly

confused with each other, but rarely with the other sounds. For example, from

MN55 Table II, /ma/ is heard 20 times when /ba/ is spoken, (S15,8(−12) = 6.72%

of the time), while /ba/ is heard 11 times when /ma/ is spoken (5.83% of the time).

2.5 TRANSFORMATION FROM THE WIDEBAND
SNR TO THE AI

Miller and Nicely used the wideband SNR, in dB, as their measure of audibility.

However, as discussed in the introduction, there are reasons to believe that the

AI(SNR) is a better audibility measure. We shall now demonstrate this for the

MN55 data. Our approach is to transform MN55’s wideband SNR into an AI and

then to plot the resulting Si, j (AI).

To compute the AI for MN55 one needs to know the specific SNR, over

articulation bands, denoted SNRk . This requires knowledge of the average speech

spectra for five female talkers, and the noise spectra. The spectrum for five female

talkers is shown in Fig. 2.15, while the noise spectra was independent of frequency

(i.e., white). The procedure for computing AI(SNR) is described next.

2.5.1 Computing the Specific AI
The AI is defined by French and Steinberg (1947, Eq. 8) as Eq. (2.13), namely as

a 20 band average over the specific AI, denoted AIk . The specific AI is defined in

terms of the SNR

SNRk ≡ σs ,k/σn,k . (2.32)

where the speech power is σ 2
s ,k [Watts/critical-band] and the masking noise power

is σ 2
n,k [Watts/critical-band], in the kth articulation band. When calculating σs ,k ,
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Slope − 29 dB/decade

FIGURE 2.15: This figure from Dunn and White (1940, Fig. 10) shows the average

power spectrum for 6 men and 5 women. The dashed curve, which approximates the power

spectrum for the 5 women, has a slope of 0 from 125 to 500 Hz, and a slope of −29

dB/decade between 0.5 and 8 kHz.

the average is over 1/8-sc intervals. SNRk is the same as French and Steinberg’s

band sensation level, which they denoted as E. The kth articulation band power-snr

speech detection threshold may be modeled as

I + �I
I

≡ σ 2
n,k + c 2σ 2

s ,k

σ 2
n,k

= 1 + c 2snr 2
k , (2.33)

where a frequency independent speech detection constant c is determined empiri-

cally from data on the detection of speech in noise (Fletcher and Munson, 1937;

French and Steinberg, 1947). The role of c is to convert the speech RMS to the

speech peaks, which are typically 12 dB above the RMS speech level. When SNRk

is specified in terms of speech peaks, c = 2.
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Converting to decibels, and scaling by 30, defines the specific AI

AIk = min
(

1
3

log10

(
1 + c 2snr 2

k

)
, 1

)

. (2.34)

Relationship Eq. (2.34) follows from the detailed discussions of French and Stein-

berg (1947) and Fletcher and Galt (1950), followed by the subsequent analysis by

Allen (1994) [see especially, Fletcher 1995, Eq. (10.3), p. 167], and is more accurate

than Eq. (2.16) in the neighborhood of the speech detection threshold.

Between 0 and 30 dB, AIk is proportional to log(SNRk) because the percent

of the time the speech is above a certain level is proportional to the dB-SL level

(rethreshold sensation level) (French and Steinberg, 1947; Allen, 1994). The factor

of 1/3 comes from the dynamic range of speech (30 dB) which is used as the

normalization factor in a given articulation band (French and Steinberg, 1947, Fig.

4, p. 95). As discussed extensively by French and Steinberg (1947, Table 12), an

empirical threshold adjustment must be made, labeled c in Eq. (2.33). The value of c

is chosen such that the speech is just detectable when cSNRk = 1, in each cochlear

critical band, corresponding to specific AIs of zero (i.e., AIk = 0). In the present

computations this adjustment was 6 dB (c = 2), as was empirically determined by

French and Steinberg (1947, Eq. 12, Fig. 21). A more precise estimation of c will

require repeating Fletcher’s critical ratio experiment using narrow bands of speech,

with a white noise masker and measuring SNRk at the detection threshold. The

min(x, 1) part of the definition limits the AI on the high end, since for an SNR

above 30 dB, the noise has a negligible effect on the articulation (and intelligibility).

2.5.2 The Band Independence Model of the Total Error
The average sound articulation error e (SNR), in terms of the average sound articu-

lation Pc (SNR), is

e (SNR) = 1 − Pc (SNR). (2.35)
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In 1921 Fletcher showed that the articulation error probability e (SNR) could

be thought of as being distributed over K independent articulation bands. The

bandwidth of each of these articulation bands was chosen so that they con-

tribute equally to e (the articulation per critical band is constant from 0.3–7 kHz

(Fletcher and Galt, 1950; Allen, 1994, 1996). Assuming band independence, the

total articulation error may be written as a product over K band articulation errors,

as given by Eq. (2.12).

R. Galt established that the articulation bandwidth is proportional to cochlear

critical bandwidths (French and Steinberg, 1947, p. 93), as measured by the critical

ratio method and the frequency JND (Allen, 1994, 1996). Fletcher then estimated

that each articulation band was the equivalent of 1 mm of distance along the basilar

membrane, thereby taking up the 20 mm distance along the basilar membrane,

between 300 to 8 kHz (Allen, 1996). Thus the AI [Eq. (2.13)] may be viewed

as an average SNR, averaged over dB units, of a scaled specific SNR, defined over

cochlear critical bands.

As first derived in Allen (1994), the probability of articulation error in the

kth band εk may be written in terms of the specific AI as

εk = emin
AIk/K , (2.36)

where the constant emin is defined as the minimum error via the relationship

emin ≡ 1 − max
SNR

(Pc (SNR)) . (2.37)

This constant emin depends in general on the corpus, talkers and subjects. For

Fletcher’s work, emin was 1.5% (H ≈ 11, i.e., more than 2048 sounds). For the

work reported here, a value of 0.254% (H = 4) was used, based on an extrapolation

of the MN55 data to AI = 1 and a minimization of the model parameters emin and

c for a best fit to the MN55 data.

Equation (2.10) follows from the above relations, and only applies to the case

of MaxEnt phones, such that the phone entropy is maximum.
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FIGURE 2.16: Using the speech power spectrum given by the dashed line in Fig. 2.15,

and assuming a uniform noise spectral level, the AI (SNR) was calculated. Each curve shows

the relative spectral level of the speech having a peak RMS level at the wideband SNRs

used by Miller and Nicely [−18, −12, −6, 0, 6, 12], in units of dB. The top curve shows the

+12 dB speech spectrum. The dashed-dot line is the noise spectral level having an RMS

of 0 dB.

Fig. 2.16, left, shows the relative spectrum and noise level corresponding to

SNR’s of −18 to +12 dB, for female speech with a white noise masker. On the

right one may see the resulting AI(SNR), based on the calculations specified by the

equations presented in this section. The final values of the AI were determined with

c = 2 to be (starting from an SNR of +12): [0.459, 0.306, 0.186, 0.1, 0.045, 0.016].

Because the spectrum of the speech and the spectrum of the noise are not the

same, the AI(SNR) cannot be a linear function of SNR. Only for the case where

the two spectra have the same shape, will AI(SNR) be linear in SNR. For the case

in hand, a white noise masker, the high frequencies are progressively removed as

the SNR decreases, as shown in the left panel of Fig. 2.16.

2.5.3 AM(SNR) to AM(AI)
The left panel of Fig. 2.17 shows the MN55 consonant identification curves

P (i)
c (SNR) ≡ Si,i (SNR), as a function of the SNR for each of the 16 sounds

(i = 1, . . . , 16), along with their mean Pc (SNR) (solid curve with circle symbols)

Pc ≡ 1
16

16∑

i=1

P (i)
c . (2.38)



ARTICULATION 67

−20 −10 0 10
0

0.2

0.4

0.6

0.8

1

SNR (dB)

P
c(S

N
R

)

P
correct
(i )  for i=1,...,16 & mean (Tables I−VI)

mean
i
(P

c
(i ))

P
c
(i)(SNR)

(SNR+20)/30

0 0.5 1
0

0.2

0.4

0.6

0.8

1

AI

P
c(A

I)

mean
i
(P

c
(i))

P
c
(i)(AI)

1−(1 − 1/16)emin
AI

FIGURE 2.17: The light dashed lines are P (i)
c for each of the 16 consonants. On the left

the abscissa is the SNR in dB, while on the right, the AI is used as the independent variable.

The solid-thick curve (circles) on both the left and right is the average score Pc Eq. (2.38).

The solid-thick curve (squares) on the right is the average phone prediction given by

Eq. 2.39.

It must be mentioned that Eq. (2.38) applies only to the case at hand, where the a

priori probabilities of the sounds are equal (i.e., 1/16). In the more general case, a

Bayesian formulation would be required.

In the right panel the individual scores, along with the average, are shown as

a function of the AI. To transform from SNR to AI the values shown in the right

panel of Fig. 2.16 are used as determined by a sum over terms defined by Eq. 2.34

with c = 2.

We also wish to compare the AI model prediction to the measurements

shown in Fig. 2.17. However it is necessary to modify Eq. (2.10) so that it accounts

for chance (guessing) given by Pchance = 2−H, whenH = 4 and AI = 0. This is done

by again assuming independence of the error probabilities. Since chance error for

guessing is e chance = 1 − Pchance, the chance-corrected Pc (AI) formula is

Pc (AI,H) = 1 − e chance(H) emin
AI (2.39)

with

e chance(H) ≡ 1 − 2−H. (2.40)
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Fletcher’s formula Eq. (2.10) is the limiting case of Eq. 2.39 when H becomes large

(Fletcher’s H ≈ 11).

A plot of Eq. 2.39 is shown in the right panel of Fig. 2.17 (solid curve, square

symbols), with emin = 0.254%, and H = 4. The fit of Eq. 2.39 to the average of

the 16 MN55 curves is excellent.

Discussion: The left panel of Fig. 2.17 shows that there is an approximately

linear relationship between Pc (SNR) and SNR over the range from −18 to 6 dB.

The thick dashed-dot line is (SNR+20)/30. This line is useful as a simple reference.

The main deviation from the linear dash-dot curve is due to the strong

saturation that occurs for the two nasal sounds and sound 7 (the three curves with the

highest Pc (SNR)). Note that each of the sounds have a nearly linear P (i)
c (SNR), with

different saturation levels (if they are reached). The saturation point for Pc (SNR)

occurs at an SNR of about 30 dB above the threshold, at −20 dB (fat solid line

with circles). Note that since Pc (SNR) depends on the noise spectrum, the linear

relation observed in the left panel of Fig. 2.17 can only hold for the white noise

masker, since if the noise spectrum is changed, Pc (SNR) must change, and it is

linear for the white noise case.

In the right panel of Fig. 2.17 the extended AI model (Eq. 2.39) is shown

for MN55’s data. Each of the 16 curves P (i)
c (AI), i = 1 . . . 16, are shown as the

light-dashed curves. This average [Eq. (2.38)] is shown as the solid-thick curve

with circles.

The solid-thick line with squares is the extended (chance-corrected) AI

model, Eq. 2.39. The value of emin of 0.254% is one sixth that used by Fletcher

(1.5%). The smaller size could be attributed to the larger amount of training the

subjects received over such a limited set size H = 4 = log2(16).

As may be seen in the left panel of Fig. 2.16, since MN55 used white noise,

the SNRk for frequency bands larger than about 0.7 kHz have an SNR of less than

30 dB, resulting in an AI of much less than 1. In fact the AI was less than than 0.5

for the MN55 experiment, corresponding to a maximum score of only 90%.
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A most interesting (and surprising) finding is that the extended AI model

(Eq. 2.39) does a good job of fitting the average data. In fact, the accuracy of the

fit over such a small set of just 16 consonants was totally unanticipated. This needs

further elucidation.

2.5.4 Extended Tests of the AI Model
If one plots the total error probability e (AI) = 1 − Pc (AI) on log coordinates, as a

function of AI, such plots should approximate straight lines. This follows from the

log of Eq. 2.39:

log (e (AI)) = log(emin) AI + log(e chance(H)), (2.41)

which has the convenient form y = ax + b. The ordinate (y-axis) intercept

of these curves at AI = 0 gives the log chance-error [b ≡ y(0) = log(e (0)) =
log(e chance(H))], while the ordinate intercept of these curves at AI = 1 defines

the sum of the log-chance error and the log-minimum error, namely [a + b ≡ y(1)

thus a = log(emin)]. In Fig. 2.18 the log-error probabilities for each of the 16

sounds, along with the average and the AI model, are shown. The sounds have

been regrouped so that the log-error plots have similar shapes. The shallow slopes

are shown on the left and the steeper slopes on the right.

From Fig. 2.18, we will see that the linear relationship [Eq. (2.41)] holds

for 11 of the 16 sounds, with the free parameters emin(i, j ) and e chance(i), either

depending on the sound, or on a sound group.

The upper two panels show the most linear groups, while the lower panels

are the most nonlinear (non-straight) log-error curves. The curves that are close to

linear (the two top panels) are consistent with the AI model, due to Eq. (2.41).

This observation of a log-linearity dependence for the probability of error of

individual sounds is rather astounding in my view. First, there was no a priori basis

for anticipating that individual sounds might obey Fletcher’s band-independence

property, Eq. (2.9). Second, if individual sounds obey equations of the form of



70 ARTICULATION AND INTELLIGIBILITY

0 0.2 0.4 0.6
10

−1

10
0

AI

Sounds 1,3,5,9,10,12

0 0.2 0.4 0.6
10

−2

10
−1

10
0

AI

Sounds: 2,6,7,13,14

0 0.2 0.4 0.6
10

−1

10
0

AI

1–
s i(A

I)
, 1

–m
ea

n i(P
c(i

) ),
 e

m
in

A
I

1–
s i(A

I)
, 1

–m
ea

n i(P
c(i

) ),
 e

m
in

A
I

1–
s i(A

I)
, 1

–m
ea

n i(P
c(i

) ),
 e

m
in

A
I

1–
s i(A

I)
, 1

–m
ea

n i(P
c(i

) ),
 e

m
in

A
I

Sounds: 4,8,11

0 0.2 0.4 0.6
10

−2

10
−1

10
0

AI

Sounds: 15,16

FIGURE 2.18: This figure shows the probability of error for the ith sound, P (i)
e (AI) ≡

1 − P (i)
c (AI), as a dashed curve. To reduce the clutter, the sounds have been sorted over the

four panels, with the sound number indicated in each panel title. The top two panels are

the cases where the individual sound error curves are close to straight lines. The left-upper

panel are those cases where the sound lies above the average, while the right-upper panel

shows those cases where the sound lies below the average. The two lower panels correspond

to the sounds that violate the exponential rule (are not straight lines on a log-error plot). For

reference, each panel contains the average probability of error Pe (AI) ≡ 1 − Pc (AI), shown

as the solid curve with circles, and the model error emin
AI, shown as the solid line (squares).

Eq. (2.39), then sums of such equations cannot obey Eq. (2.39), since the sum of

many exponentials, each having a different base, is not an exponential.

The finding that individual CV recognition error is exponential in the AI

(the basis of the band independence hypothesis) therefore extends, and at the same

time violates, Fletcher’s original fundamental AI hypothesis that the average error

is exponential.
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FIGURE 2.19: Since the log-error plots for /ma/ and /na/ (see the lower-right panel of

Fig. 2.18) show the greatest deviation from linear, they seem to be a “worst case” for the AI

model. From this figure it is clear that the reason for the deviation from linear dependence

is due to the migration of chance from 1/16 (H = 4) to 1/2 (H = 1), due to the NASAL

grouping. The rising nasal curves results from the robust grouping of the nasal, resulting in

the increase in chance from 1/16 at AI = 0 to 1/2 at AI ≈ 0.045. The solid-thick curve is

the sum of all the errors (and is 1 − Pc for the spoken sound). A dashed line has been drawn

from the point (0,.5) to (0.31,.01). This line fits the error curve (/na/ given /ma/, and /ma/

given /na/) with very little error, for AI = AIg > 0.045, and intercepts the ordinate at 1/2

for AI = 0, as expected for a 2-group (H = 1). This further supports the band independence

model Eq. (2.12).

It is therefore essential to understand the source of the deviations for the

individual sounds from the average, and to critically assess the accuracy of the

model for individual sounds. Five sounds (4, 8, 11, 15, 16) have a probability of

error that deviates from linear, with the most nonlinear and the largest deviations

from the mean, being the nasals (15,16), as shown in the lower-right panel. In the

next section we explore the reasons for this.

Log-error for the nasals: In Fig. 2.19 the nasal data are shown using the same

log-error linear decomposition used in Fig. 2.14, where the total error (solid-thick

curve) is the sum of the errors of the competing sounds [i.e., Eq. (2.31)]. In the

case of the nasals, the confusions for the other sounds is small, namely only /ma/

and /na/ significantly compete.

As a result of plotting the data as a function of AI, for AI > AIg = 0.045

(SNR ≥-12), the log-error curves become linear in AI, as predicted (modeled)
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by Eq. 2.39. This value of AIg is shown in the plot with an arrow indicating the

point of separation of the target sound from the competing sound. Extrapolation

of this linear region back to AI = 0, one finds the chance guessing probability of

1 − 2−Hg = 1/2, corresponding to a nasal group entropy of Hg = 1. This is shown

on the graph by the dashed line superimposed on the corresponding error curve

(stars). In the region 0 ≤ AI ≤ AIg = 0.045,H depends on AI, since it dramatically

drops from 4 to 1.

Thus the reason that the nasal curves are not linear in Fig. 2.18 is that

chance (the entropy factor) is dramatically changing between 0 ≤ AI ≤ AIg , due

to the formation of the perceptual “event-nasal” group.

When the data is plotted as a function of SNR, as in Fig. 2.14, the log-error

linearity is not observed. Also the shape of the curve will depend on the spectrum

of the noise. Clearly the SNR to AI transformation is an important key to making

sense of this data.

One may assign each sound to a unique group by grouping all the sounds

having off-diagonal PI functions that initially rises from chance, as a function of

the SNR. The strength of the group may be characterized by the value of the SNR

where the functions have a local maximum (SN Rg = −12 dB in the example of

Fig. 2.14 or AIg = 0.045 for the data of Fig. 2.19).

Log-error for /pa/, /ta/, and /ka/: Finally in Fig. 2.20 we return to the case of

/pa/, /ta/, and /ka/. This three-group generalizes the /ma/, /na/ two-group conclu-

sions of Fig. 2.19. In the middle panel it is clear that for small values of AI less than

0.045 S2,2(AI) for /ta/ is equal to the curves for /pa/ and /ka/ (S2, j (AI), j = 1, 3).

As the AI rises above about 0.1, the three curves (circles) split due to the identifi-

cation of /ta/ and the rejection of /pa/ and /ka/. The shape and slope of the curves

corresponding to the two rejected sounds are identical. The projection of the re-

jected curves back to AI = 0 gives the probability of chance-error for a group of 3

(i.e., 1-1/3), as shown by the dashed line in this middle panel. In the left-most and

right-most panels, corresponding to /pa/ and /ka/, the two rejected sounds have

very different log-error slopes. However, the two dashed curves still project back
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FIGURE 2.20: This figure shows Ss ,h (AI) for s = 1, 2, 3 corresponding to the sounds

/pa/, /ta/, and /ka/. The dashed lines connect (0,1-1/3) with (0.48, 0.1) and (0.442, 0.01).

A second weak group (AIg ≈ .01) labeled by the triangles corresponds to the Affrications,

sounds 4-7.

to the chance error probability for a group of 3 (1-1/3). This change in the slope

for the two sounds shows that emin(i, j ) can, in general, depend on the sound in

the group. This seems to reflect the more robust nature of /ta/ relative to /pa/ and

/ka/ due to /ta/ having more high frequency energy than its competitors.

Based on the small amount of the data shown in Fig. 2.19 and Fig. 2.20, it

appears that the band independence assumption Eq. (2.12) and the band error ex-

pression Eq. (2.36) model the individual sound confusions Si, j (AI) more accurately

than they model the average band error [Eq. (2.12)]. The total sound error is more

precisely the sum of these off diagonal confusion terms, as given by Eq. (2.31).

The implications of this model seem quite significant, but without more data, it is

unwise to speculate further at this time.

The symmetric AM: The upper half of Fig. 2.21 shows all the S(A) data. The

first panel (upper-left) shows S1,r (A), with r = 1, 2, . . . , 16. The lower half of

the figure shows the skew symmetric matrix A, as a function of the scaled snr,

(SNR + 20)/30.

The skew symmetric AM: As shown in Fig. 2.21 a small number of the skew

symmetric PI function-pairs are larger than the others. For example, only 6 have
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more than 5% error, and none are more than 10%. Thus the ordinate of the skew

symmetric PI functions has been expanded by a factor of 10. For each skew symmet-

ric PI function Ar,c (A), there is a corresponding symmetric negative PI function

in one of the neighboring panels. An analysis of these pairs identifies individual

curves. For example, / / and / / are the largest matching curves of opposite
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FIGURE 2.21: This chart presents the confusion Tables I–VI (the wideband data) A
after being split into the symmetric and skew symmetric parts. The upper 4 × 4 display

shows Eq. (2.27) the symmetric component S(AI) of the AM. The thick-solid curve is the

diagonal element r = c , while the off diagonal sounds are given by the remaining thin-solid

curves. The dashed curve is Eq. 2.39. The lower panel shows Eq. (2.28), the skew symmetric

component A(SNR), as a function of the normalized signal to noise ratio (SNR + 20)/32

(Using the AI as the abscissa for the skew component does not make sense.). The ordinate

of A(SNR) has been scaled to ±0.15 to magnify the scale of the naturally small skew

component of the AM.
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FIGURE 2.21: (Cont.)

sign. These two sounds are being asymmetrically confused (in place), with an error

as large as 10%. This confusion extends to the largest SNR, of 12 dB.

The sounds with the most significant skewness are / /–/ / (a 10% place

error), / /–/ / (a 9% place error), / /–/ / (an 8% error), and / /–/ / (a

7% place error). All the remaining asymmetric confusions have errors of 5% or less,

which may be below the level of significance. Unlike the / / and / / case, these

confusions become small as the SNR increases.

Would these confusions go to zero if the SNR were further increased? The

problem here may be the bandwidth, not the SNR. As we shall see, frequencies

above 6.5 kHz are missing in MN55, thus the AI never goes above 0.6, resulting

in problems with sounds having high frequency articulations. The flat spectrum of

the noise masks the high frequency components of the speech.
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If these larger entries in Ar,c are due to listener bias and subtle talker dialect

imperfections, then it would be best to remove this component, as may be done

by analyzing S rather than A. Two obvious questions are “Why is A so close to

symmetric?” and “Is it a priori obvious that A should be symmetric?” Symmetric

channels have important properties that might aid in our further data analysis, thus

there is a large stake in answering the above questions.

2.5.5 The AI and the Channel Capacity
It is significant that the band average AIk [Eq. (2.13)] is over in dB units, defined

by Eq. (2.16), rather than over power (i.e.,
∑

k SNR2
k). Since the sum of logs is the

log of products (i.e., log x + log y = log xy):

1
K

∑

k

SNRk ∝ log

(
∏

k

snrk

)1/K

, (2.42)

the AI may be defined in terms of a geometric mean of SNRs. This is a subtle and

significant observation that seems to have been overlooked in discussions of the

AI. The geometric mean of the snrk over frequency is used in information theory

as a measure an abstract volume, representing the amount of information that

can be transmitted by a channel (Wozencraft and Jacobs, 1965). For example, the

Shannon Gaussian channel capacity formula

C =
∫ ∞

−∞
log2[1 + snr2( f )] d f, (2.43)

which is a measure of a Gaussian channel’s maximum capacity for carrying infor-

mation, is conceptually very similar to Eq. (2.42).14 From Fig. 2.22, we see that

AIk(SNRk) as given by Eq. 2.16 is a straight–line approximation to the integrand of

14 A discussion with Leo Beranek at the 2002 Winter meeting of the ASA reveled that he was
aware of the similarity between C and A as early as 1945, but the observation was never
explored.
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FIGURE 2.22: Plot of log(1 + SNR2) and log[max(1, SNR)2] versus SNR = 20 ∗
log(SNR).

the Shannon channel capacity formula C(SNR). The figure shows the two functions

C(SNR) ≡ log2[1 + snr2] and A(SNR) ≡ log2[max(1, snr)2].

The first formulation of the channel capacity, as proposed by R. V. L. Hartley

(Hartley, 1928; Wozencraft and Jacobs, 1965), was to count the number of inten-

sity levels in units of noise variance. This is a concept related to counting JNDs in

psychophysics. It is interesting and relevant that R. V. L. Hartley was the father of

the decibel, which was also based on the intensity JND.15 Hartley, a Rhode Scholar,

was well versed in psychophysical concepts (Hartley and Fry, 1921). The expression

log(1 + snr2) = log
(

P + N
N

)

, (2.44)

where P and N are the signal and noise powers respectively, is closely related to

counting JNDs. It has been observed, by George A. Miller (Miller, 1947b), that

a signal change is close to the first JND level if its presence changes the input

stimulus by 1 dB, that is when

10 log10

(
P + N

N

)

= 1. (2.45)

15 The JND is the just noticeable difference. The intensity JND is the just noticeable change in inten-
sity (Fletcher, 1995; Allen and Neely, 1997). Counting JNDs has a long history in psychophysics.
The idea of using the variance as a scale was introduced by Thurstone (Baird and Noma, 1978).
The concept of counting JNDs is attributed to Fechner (circa 1860) (Fechner, 1966), who is
viewed as the Father of Psychophysics. For example, see Ch. 2 of (Baird and Noma, 1978) at
http://auditorymodels.org/jba/BOOKS Historical/Baird/.
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Hence, the function log(1 + c 2SNR2) in fact expresses the noise level in terms

of the JND (French and Steinberg, 1947; Fletcher and Galt, 1950; Kryter, 1962b;

Siebert, 1970; Allen and Neely, 1997).16 The product of the number of articulation

bands times the number of JNDs determines a volume, just as the channel capacity

determines a volume.

2.6 SINGULAR VALUE DECOMPOSITIONS
OF THE AM SYMMETRIC FORM

To transform a symmetric matrix into a block-symmetric form, one must know

how to group (i.e., order) the sounds. This grouping is closely related to statistical

clustering and scaling techniques. Multidimensional scaling (MDS) methods were

one of the earliest transformations that were systematically explored, as reviewed

in the classic reports of Shepard (1972, 1974) and Wang and Bilger (1973).

Other possible transformations exist. For example, one alternative scaling is

a permutation. A permutation matrix P has the property that P2 = 1, namely the

second application of any permutation, undoes its effect. An example of a permu-

tation is the interchange of two rows and their corresponding columns. A more

general linear transformation corresponds to a pure rotation about some point. The

family of rotations are said to be orthogonal and satisfy the property U TU = 1,

where U T is the transpose of U , corresponding to mapping the rows of U into the

columns of U T. Rotations are much more general than permutations, which make

up a subgroup of the rotations. The AM would have a totally different form after any

such orthogonal rotations. The question is, what general type of linear transforma-

tions are needed to form consonant clusters from AM? Ideally this set of rotations

(or the more limited permutations) would not depend on our a priori knowledge. If

we accept the more general solution of rotations, the solution is given by an eigen-

value decomposition (EVD) of the symmetrized AM S(SN R) [or alternatively the

singular value decomposition (SVD) of the AM]. The EVD can both characterize

16 It seems that this was well understood by both Fletcher and Hartley, who both worked for
AT&T.
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FIGURE 2.23: This figure shows a 4D symmetric approximation to the Miller–Nicely

articulation matrix for the data from Table II (SNR = −12 dB). Think of the left figure as

looking down on the right figure, in a 4 dimensional space. The details of this construction

are described in the text.

the required rotations, while, at the same time, define a hierarchy of approximations

to the AM, to any order of approximation. It is well known that such approxima-

tions may be generated by using the EVD expansion to reconstruct the matrix, after

setting the eigenvalues to zero having magnitude less than a given threshold.17

In Fig. 2.23 we show such a representation for the data of Fig. 2.11 at a

SNR of −12 dB, and in Fig. 2.24 is a similar representation for the case of −6 dB

SNR. For these figures the CM C is first row normalized, and rendered symmetric,

resulting in matrix S(SNR), Eq. (2.27). This real 16 × 16 symmetric probability

17 These conclusions are based on the observation that 2X = X + XT + X − XT , sort(svd(X +
XT)) = sort(abs(eig(X + XT))) and sort(svd(X − XT)) = sort(abs(eig(X − XT))), along with the
fact that the matrix of eigen vectors are orthogonal. The EVD, represented by eig(X), factors
matrix X as X = V λV T while the svd(X) function factors X into X = U	V T , where 	 ≥ 0 and
λ are diagonal and V and U are orthogonal matrices, defined by the property UU T = V V T = 1.
Finally the U defined by eig(X + XT) and the U and V defined by svd(X + XT) are all “identical”
in the following sense: U = P±V , where P± is a sign permutation matrix [thus, U = O(P±V )
whereO is order of within ±1]. These sign permutations correspond to reflections across the planes
perpendicular to each eigen vector. The columns of V , where V λV ′ ≡ X′ X, are the same as the
columns of V , where U	V ′ ≡ X, within an order permutation, and sign change, when X is full
rank.
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FIGURE 2.24: This figure is the same as Fig. 2.23, but for the case of −6 dB.

matrix is then decomposed into an outer-product expansion of the form

S = UλU ′. (2.46)

This transformation determines a unique 16 × 16 real eigenvector matrix U , and

a diagonal eigenvalue matrix λ, sorted in magnitude, from largest to smallest. The

eigenvalue matrix λ is then absorbed into the normalization of the U eigenvectors,

giving a new matrix of orthogonal but not normal eigenvectors

u ≡ U
√

|λ|. (2.47)

An example: Let u be composed of column vectors [u1, u2, . . . , u16]. Suppose

only the first four eigen values are significant. We therefore drop all but the 4 largest

eigenvectors, resulting in the 16 × 4 matrix

U4 ≡ [u1, u2, u3, u4] (2.48)

of significant rescaled eigen vectors. This allows us to approximate S16×16 to fourth

order as

M4 = U4 × U ′
4. (2.49)
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Each point in Fig. 2.23 is defined by a row of U4. Two dimensions are

suppressed for each plot. For example, in the left panel we see the 16 points ψi in

a 2D space, having coordinates defined by rows of the 16 × 2 submatrix

ψ1 :

ψ2 :
...

ψ16 :

u1,2 u1,3

u2,2 u2,3
...

...

u16,2 u16,3

(2.50)

defined by the second and third eigenvectors. These 16 pairs [yi , zi ] represent the

rotated coordinates of the 16 sounds (in the order defined by Fig. 2.11).

Given the rotated coordinates, one may compute the Euclidean distances

between each of the sounds in this 2D subspace of the transformed AM. From

these distances, groups may be defined. Each group may then be characterized by

its mean and variance. This method may be used when the CM is not given as a

function of the SNR, as is frequently the case of highly specialized data (learning

disable children, cochlear implants, etc.). A detailed description of Fig. 2.23 is

presented next.

The small solid circle represents the origin. In the left panel, dimensions

2 versus 3 are shown, and we see that the confusion data cluster into three main

groups. Dimension 1 is not shown since the first eigen vector is a constant, meaning

that the three groups in plane 2-3 lie on a plane (i.e., have the same coordinate in

dimension 1, which follows from the fact that the row-sums of A are 1). The left

most cluster represents the unvoiced sounds. The lower cluster is the voiced sounds,

while the upper-right cluster gives the two nasals. In the right panel, dimensions

2 versus 4 are displayed, and we see that the fourth dimension partially separates

the sounds of each group. For example, of the UV sounds, two (/shaw/ and /saw/)

are separated by dimension 4. The various symbols code place distinctions, defined

as follows. ©: [/pa/, /fa/, /ba/, /va/], +: [/ta/, /ta/, /da/, /Da/, /na/], ∗: [/ka/, /sa/,

/ga/, /za/, /ma/], and �: [/Sa/, /Za/]. Such a representation allows us to compute

the distance between each of the sounds, as a function of the dimensionality of the
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FIGURE 2.25: Eigenvalues λn(snr) were computed for each Miller–Nicely AM matrix

(wideband data), and were then sorted in absolute value. The resulting values |λn(snr)| are

shown here as a function of the eigenvalue number n with snr as a parameter.

representation. These distances are entirely based on perceptual confusion measures.

The eigen values for MN55, as a function of SNR, are shown in Fig. 2.25. Arguably,

these results strengthen the view that the dimensionality of the MN55 data are low,

perhaps on the order of 7 to 10 dimensions (e.g., binary events).

Summary: The EVD of the symmetric part of the AM(SNR) allows us to com-

pute the perceptual distance between each of the sounds, averaged across subjects,

or the perceptual spread from the group average, across listeners, or even talkers,

given Ss ,h for each case. From Fig. 2.23 one may see that the voiced, unvoiced, and

nasal sounds each cluster.18 The eigenvalue decomposition is a mathematically well

defined linear family of transformations that does not depend on a priori knowl-

edge. It appears to be better behaved than MDS procedures, which are known to be

unstable in this application (Wang and Bilger, 1973). In fact Wang and Bilger say

In general, the results of [multidimensional] scaling analyses support the

notion that articulatory features, either singly, or in interactive combina-

tion, do, in fact, constitute valid perceptual dimensions. This conclusion,

18 The clusters of this figure are quite similar to the previous multidimensional scaling (MDS)
clustering derived by (Soli et al., 1986).
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however, reflects the fact that scaling solutions invariably require consid-

erable interpretation, and that linguistic features, as well as traditional

articulatory features, provide a ready basis for that interpretation. Ob-

tained spatial configurations have not been sufficiently stable across ex-

periments and scaling methods to suggest definition of new and totally

unanticipated perceptual features.

So far this EVD method has been less effective than working with the groupings

defined by the off-diagonal elements of the CM as a function of SNR (Allen,

2005). However in special cases, the CM as a function of SNR is not available. In

these cases EVD seems like the best choice of analysis.

2.7 VALIDATION OF THE AI
In this section we review and summarize the many papers that have attempted to

validate the AI. Even today this empirical theory is questioned [see, for example

Musch and Buus (2001a)]. In fact, AI theory is the cornerstone of the hearing aid

industry. There is little doubt of its validity. Rather it is a question of understand-

ing, credibility, and proper use. The most frequent error is the misapplication of

AI to meaningful sounds, such as HP sentences. It is also important to remem-

ber that there are many AI procedures, the most successful, least analyzed, being

Fletcher and Galt’s (Rankovic, 1997, 2002). Others include French and Steinberg

(French and Steinberg, 1947), RASTI, STI (Rapid Speech transmission Index)

(Steeneken and Houtgast, 1999) and more recently the SII (S3.5-1997, 1997).

Beranek (1947): Historically Beranek’s paper (Beranek, 1947) is a very impor-

tant review, and was one of the first to summarize Speech and Hearing results follow-

ing the war.19 Near the end of Beranek’s paper, comparisons are made between AI

calculations and experimental data. These results show strong biases, under certain

19 Prior to World War II, the two books on Speech and Hearing were Fletcher’s 1929 seminal work
and Stevens and Davis’ 1938 (reprinted 1983) important overview.
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conditions, with the AI scores being 10–15% higher than the data. Beranek’s AI

calculation was later discovered to be in error, and the problem was corrected

(Pickett and Pollack, 1958; Kryter, 1962b). Beranek’s analysis had failed to account

for the upward spread of masking.

French and Steinberg (1947): This paper, like Beranek’s, provides a broad

review of the state of the knowledge of Speech and Perception, and then presents

a method to calculate the AI. It was the first major publication to outline this the-

ory, and was the starting point for many future studies. For a detailed history of

this period see Allen (1994, 1996).

Fletcher and Galt (1952): Hundreds of combinations of conditions are pre-

sented, each of which pushes the Fletcher and Galt version of AI theory to its

limits (Fletcher and Galt 1950). Many of the details are documented in sev-

eral of the many Galt notebooks, which were recently obtained from the AT&T

Archive, and are now available on a CDROM from the Acoust. Soc. of Am.

(Rankovic and Allen, 2000). Many of these calculations have recently been repli-

cated by Müsch (Müsch, 2000).

Kryter (1960–1962): One of the most widely cited papers on the validation of

the ANSI version of the AI, based largely on the French and Steinberg version,

is that of Kryter (Kryter, 1962b) and the companion paper (Kryter, 1962a), which

defines the Kryter calculation method in fine detail, with worksheets. Unfortunately

these fine papers fail to cite Fletcher and Galt’s 1952 work.

Most of Kryter’s results show that the 20-band method (Kryter, 1962a)

worked extremely well, in agreement with French and Steinberg (Kryter, 1962b).

They ran several tests: (i) narrow bands of MaxEnt speech with narrow band noise,

(ii) wide band spectrally shaped noise, (iii) they recalculated data from French and

Steinberg, (iv) Egan and Wiener narrow-band speech data in white and 15 dB/oct

lowpass noise, along with (v) Miller’s narrow-band noise maskers, and (vi) Pickett

and Pollack’s measurements in tilted [−12, 0, +6] dB/oct noise. Studies (v,vi)
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were important because the noise triggered the nonlinear upward spread of mask-

ing, which has the effect of attenuating signals having frequencies above those of

the masker, once the masker level reaches about 65 dB SPL (Allen, 2001).

The important issue of multiple pass-band filters, for which the AI method

fails, is addressed in (Kryter, 1962b, p. 1699), and even more extensively in

(Kryter, 1960). These issues will be discussed further in the next section.

Boothroyd Review (1978): In 1978 Boothroyd wrote an insightful review chap-

ter that covers some of the same topics as this review, and comes to similar con-

clusions. The following are summary key quotes that complement the present

discussion:

Stop consonants . . . are characterized by a sudden rise of intensity after

a period of silence, and the difference between nasal consonants and

vowels may be perceived partly on the basis of intensity differences.

(p. 120)

The most significant finding of this research (Fletcher and Galt, 1950;

French and Steinberg, 1947), and perhaps the least generally under-

stood, [is] that under certain circumstances, the acoustic spectrum

can be regarded as . . . [the output of a filter bank], each [filter] con-

tributing independently to the probability of phoneme recognition.

(p. 122)

It is clear from Miller and Nicely’s work that there are marked differences

in the frequency distributions of information about the different features.

. . . place of articulation is predominantly high frequency . . . voicing and

manner of articulation is available over a wide frequency range. . . . these

ranges correspond closely with the range of the second formant. When

listening to filtered speech, however, it quickly becomes obvious that

information on rhythm and intonation is, like manner and voicing in-

formation, diffusely spread across the acoustic spectrum. Much of the
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information that serves to differentiate vowels from consonants and to

differentiate consonants on the basis of voicing and manner of articu-

lation is to be found in the time/intensity patterns of speech or in the

relative times of occurrence of different events. (p. 127)

voiced and voiceless stops may be differentiated on the basis of the

intensity of the fricative noise and the time interval between plosive

release and the onset of voicing (the voice onset time). The most useful

single formant is the second. (p. 127)

Duggirala et al. (1988): Duggirala et al. (1988) used the AI model to study

distinctive features. This is one of the few studies that looks at the effect of different

frequency bands on distinctive feature error.

Sinex et al. (1991), looking in the cat auditory nerve, found as outlined by

Abramson and Lisker (1970) that the smallest VOT-JND is coincident with the

category transition (Sinex et al., 1991).

Müsch (1999): Müsch has provided a Matlab c© version of Fletcher and Galt’s

AI calculation for free distribution (Müsch, 2000). He used this program to verify

many of the conditions published by Fletcher and Galt (1950).

Stevens and Wickesberg (1999): An interesting paper by Stevens and Wickes-

berg (1999) looks at the detection of voiced vs. unvoiced whispered stop consonants.

In the next sections we review several of these papers in more detail, and inter-

pret their results, toward an improved understanding of natural robustness in HSR.

2.8 CRITICISMS OF ARTICULATION MODELS
While the AI model is heavily used today, for example in the hearing aid industry,

there have been many criticisms of it in the literature. In order to fully understand the

limits of this complex empirical theory, these critical comments must be addressed.
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The performance factor: The performance factor PF was first introduced by

Fletcher and Steinberg to account for long term learning effects. These learning

effects are extensively documented in the internal documents from Bell Labs

(Rankovic and Allen, 2000). There has since been much uncertainty about the sig-

nificance of the PF, and it has been seen by some as a free parameter that can

be used to fit almost any monotonic curve. This is far from the case, and is an

unfair representation. As shown by Allen (1994, 1996), PF is constrained by either

the maximum articulation (or minimum error), under the very best of conditions.

The parameter emin = 1 − smax [Eq. (2.10) with AI = 1] is equivalent to the PF.

It is essential to measure this maximum articulation point for new materials. The

maximum articulation may be largely dominated by production errors (unpublished

observations of the author) (Kryter, 1962b).

Hirsh (1954): Hirsh distinguishes the testing of communication equipment (for

normal hearing) from clinical measurements (on the hearing impaired). A major

thrust of this study was in relating the Intelligibility to the Articulation scores. His

main criticism was that for a similar AI value, filtering and noise give different

scores, with higher scores for the noise than for filtering.

The paper found relations in the data (i.e., Hirsh’s Fig. 10) that are similar to

those found by Boothroyd and Nittrouer, and which may be modeled by Boothroyd’s

k-factor. Specifically, as the noise and filtering is increased, W(S) of Fig. 3.1 ap-

plies, with a k-factor that depends on case. For filtering k ≈ 7, while for noise

k ≈ 3.

There are several things we can say about this analysis. First the AI was

not intended to be used with meaningful words, and the more we understand

about context effects, the more clearly this rule applies. From the work of Miller’s,

Boothroyd et al.’s, and Bronkhorst et al. on context, it is clear that the AI is a

measure of the front end event extraction process. Thus the measure given in Hirsh’s

Fig. 10 is not a test of the AI because of the influences of context on his experimental

results.
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Rankovic tested the question of filtering and noise explicitly (Rankovic, 1997)

and found that the ANSI AI standard treated filtering and noise differently, as found

by Hirsh. When she used the full Fletcher calculation on her own database of

MaxEnt sound articulations, the agreement was nearly perfect. Thus she con-

firmed20 that the Fletcher and Galt (1950) AI deals with this problem, for the case

of MaxEnt syllables. Hirsh et al. raise an important issue, but maybe for the wrong

reasons, since they did not use MaxEnt sounds.

Kryter (1962): As pointed out in Section 2.7, Kryter found conditions that did

not agree with the AI, as discussed in several papers (Kryter, 1960, 1962a, 1962b).

Kryter saw a 15% higher measured score than that predicted by his AI compu-

tation (Kryter, 1962b) when the midband was removed. Kryter’s results may be

summarized as follows. The two band errors e1, e2 and the wide band error e are

measured. The AI would predict that the wideband error should be (ignoring the

masking of the low band on the high band) e1e2. However, Kryter found a total

error that was smaller than this (i.e., e < e1e2), and an AI that under-predicted

the measured articulation. The source of this large 10–15% articulation underes-

timate for the AI has remained elusive for these multi-bandpass and stop-band

conditions.

One possibility is that the information in the bands next to the dead-band

are not properly extracted, due to the fact that neighboring channels need to be

present for processing to function normally. By removing the band, the information

in the edges is lost. The AI continues to include this information, but the brain fails

to use it. This would cause the AI to over-predict the actual score. This conjecture

is not supported by any specific data that I know of.

20 Rankovic found an AT&T internal memo, written by Fletcher ( July 6, 1949-1100-HF-JO),
discussing the Fletcher and Galt paper, which clearly states that the French and Steinberg method
is not adequate with a system “having intense pure tone interference or having certain kinds of
distributed noise interference as exemplified by some of the Harvard systems.” The letter goes on
to state that the Fletcher and Galt calculation has solved this problem.



ARTICULATION 89

Warren et al. (1995–2000): Warren and colleagues did a series of studies of speech

intelligibility of CID HP sentences in very narrow bands. In their 1995 study, a

bandpass filter was created by cascading two highpass and two lowpass 48 dB/oct

electronic filters, centered on 1.5 kHz, forming a 1/3 octave band.21 They found

that the speech key words were 95% intelligible (Warren et al., 1995). This level of

intelligibility is in conflict with all other studies, and with computations of the AI,

which give a much smaller articulation. Fletcher and Galt found 12.5% and Egan

and Wiener 25% for MaxEnt CVCs.22 Warren et al. also looked at pairs of bands,

and concluded with the following claim:

The increase in intelligibility for dual-band presentation appears to be

more than additive.

This statement is strange since the whole basis of the AI is to find transformed

articulations that are additive. The intelligibility is known not to be additive

(Fletcher, 1921, 1995). Warren et al. also concluded, without actually computing

the AI, that

AI measurements cannot be used to predict the intelligibility of stand-

alone bands of speech.

Clearly something is wrong somewhere. First, they should have computed the AI

for their conditions. Second, they did not add low level masking noise. Third they

used HP sentences.

Fortunately in follow up studies the problem has been resolved. There were

two problems with the 1995 study: First was the use of HP sentences, and sec-

ond was the amount of speech information in the skirts of the filter. Once the

21 The actual bandwidth is not given in the methods section, however several of the follow-up studies
state that the bandwidth was 1/3 oct. A 1/3 octave filter centered on 1.5 kHz has a “3-dB down”
bandwidth of 345 Hz.

22 Fletcher and Galt report an articulation of 25% for MaxEnt CV phones (the bandwidth was
≈800 Hz) (Fletcher, 1995, H-8, Fig. 212, p. 390). Thus s ≈ √

0.25 = 0.5, requiring that CVCs
would be 1/8, or 12.5% correct (0.53). Egan and Wiener (1946) found MaxEnt CVC syllables to
be 25% correct in a bandwidth of ≈630 Hz (Egan and Wiener, 1946, Fig. 2, p. 437).
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HP sentences were replaced with MaxEnt words, the CVC score dropped to the

value previously observed by Egan and Wiener (25%). Namely Bashford et al.

found a score of 26% for the 1/3 octave 96 dB/oct filter. After the electronic filters

had been replaced with very high order digital filters, the score dropped to 4%

(Bashford et al., 2000).

Thus when executed properly, there is no disagreement with the AI, and no

“more than additive” effect. Unfortunately there were many years of uncertainty

introduced by the 1995 results, which probably should not have been published

without first doing the obvious sanity checks. When a result is out of line with the

rest of the literature, the burden of proof is on the shoulders of the presenters of

the unexpected results.

Lippmann (1996): Lippman measured articulation scores for MaxEnt speech

filtered into two bands: a fixed lowpass at 800 Hz along with a highpass at a variable

frequency ( fc ). The variable highpass channel was one of [3.15, 4, 5, 6.3, 8, 10, ∞]

kHz. In Fig. 2.26 we use 12 kHz as a surrogate for fc = ∞, corresponding to the

high band turned off.

Lippmann’s claim is that this stop-band data does not agree with the Ar-

ticulation Index, yet he did not compute the AI. To test Lippmann’s claim, the

AI was computed for the conditions of the experiment, as shown in the Fig. 2.26.

Table 63 on p. 333 of Fletcher 1953 book was used. The values of the table were

interpolated to get A( fc ) at high resolution, and then added in the proportion indi-

cated by Lippmann’s filter cutoffs. When computing the two band edges, a factor of

1.2 times the 800 Hz lowpass frequency, and the highpass frequency divided by 1.2

were used as the relevant cutoff frequencies. This is similar to the technique previ-

ously used (Kryter, 1960). The formula for Pc (A) for this calculation was Eq. (2.10).

As may be seen from Fig. 2.26, the agreement is quite good for the lower cutoff

frequencies, up to 8 kHz, but is not good for the low band alone (labeled, for con-

venience, as 12 kHz), where the AI gives 65% and the Lippmann data is 44.3%.

Fletcher reports an experiment score of 70% (Fletcher, 1953, Fig. 199, p. 384) for
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FIGURE 2.26: Lippmann (1996) measured the consonant error for MaxEnt sounds with

two bands, similar to Kryter (1960). The first band was a lowpass at fc = 800 Hz. The

second band was for a high filter at a frequency given by the abscissa Lippmann (1996).

MaxEnt phonemes lowpass filtered to 800 Hz (1 kHz at the 40 dB down point

on the filter skirt). Lippmann’s scores go below the Fletcher and Galt observations

when the high band is added at 10 kHz, and when no high band is provided at all.

The AI was designed to predict the average CVC score s = (2c + v)/3.

Presumably Lippmann reported scores are for the average of the initial and final

consonants (s = (c i + c f)/2). Vowel scores are not reported. Normally adding the

vowels would make the score higher, because the vowels are more intense and

therefore have a much higher SNR. The vowels depend on the mid-band that was

removed for this experiment. If more carefully analyzed, this experiment might give

some insight into the frequency regions corresponding to the different vowel sounds.

The results of this short paper are tantalizing in that they suggest possible

insights into phone recognition. For example, what are the scores for the vowels

with the mid band missing? How do the scores for the initial and final consonants

differ? What is v/c for these data. Fletcher’s analysis (see his discussion of “factor X”
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on pp. 286 and 298 of his 1953 book) showed the importance of this ratio when

defining the average phone statistic s = (si + v + s f )/3, which may not be a good

statistic for Lippmann’s experiment.

Müsch and Buus (2001): This paper is an interesting bold attempt to account for

the 1951 results of Miller, Heise, and Lichten, based on the earlier modeling work

of Green and Swets, supplemented by the multichannel signal detection model

developed by Durlach et al. (Green and Swets, 1988; Durlach et al., 1986). The

approach is based on a detection theory model of “one of M–orthogonal Gaussian

signals” (MOGS) (Green and Swets, 1988, p. 307). Signals are said to be “orthogo-

nal” if, under the best of conditions (i.e., as d ′ → ∞), the M×M detection task AM

is diagonal.23 Hartmann used identical mathematics to model (M + 1)-interval ex-

periments (Hartmann, 1997). This theory (MOGS) calculates the average Pc (d ′)

for the detection of M independent Gaussian distributed waveforms. The resulting

psychometric function [i.e., Pc (d ′)] is 2−M when d ′ = 0, and goes to 1 as d ′ becomes

large. Since this is the basic character of the Miller et al. data, as shown in Figs. 2.6

and 2.7, Müsch and Buus speculate [following those of (Green and Swets, 1988)]

that the MOGS model might apply, or have useful application, in providing insight

into the Miller et al. (1951) data.

The Müsch and Buus article is directed at highlighting several problems

with AI. On page 2897 they state that AI was developed to predict material with

context:

Speech-test scores expressed as percentage of correct responses are de-

rived from the AI through a transformation that is test-material and

test-format specific. Different transformations must be used when the

number of items in the set of test stimuli changes. Different transforma-

tions must also be used for different levels of constraints placed upon the

23 The quantity d ′ is the ratio of the difference in means of two distributions (i.e., typically Gaussian
distributions) divided by the standard deviation. It is the same as a statistical “t-test,” in its most
elementary form.
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message set. For example, low-predictability sentences require a differ-

ent transformation than high-predictability sentences. Consequently, a

large set of transformation functions is needed to accommodate the large

number of possible speech-material/test-format combinations. . . . With

the exception of a transformation for open-set phoneme recognition in a

nonsense context (Fletcher and Galt, 1950), all of these transformations

are derived empirically.

This statement seems in conflict with the development of the AI model, which

was developed for open-set MaxEnt ZP sounds (the Fletcher and Galt exception

noted in the quote). It was specifically not designed to deal with HP sentences.

While the ANSI standard provides Pc (A, M) functions for several vocabulary sizes

M, to account for context effects, the severe limits of AI when used on high con-

text words and sentences is carefully described in Kryter’s papers (Kryter, 1962b,

p. 1697). In fact Boothroyd develop his k- and j-factor methods to specifically

account for such context effects, starting from an AI calculation or experimental

measure (Boothroyd and Nittrouer, 1988). If the AI had been able to deal with HP

sentences, then Boothroyd’s papers and method would be unnecessary.

One must conclude that the MOGS model is accounting for the poorly

understood affects of chance and context in the Miller, Heise and Lichten data,

rather than problems with the AI method (Eq. (2.12)), as stated by Müsh and Buus.

The paper introduces the concept of synergistic and redundant interactions,

based on the work of Warren, Kryter, Hirsh et al., Lippmann, and others.

one such shortcoming is the AI model’s inability to account for synergistic

and redundant interactions among the various spectral regions of the

speech spectrum. [p. 2896; emphasis added]

The synergistic and redundant interactions they speak of stem from the criticisms of

the AI discussed earlier in this article (Warren, Kryter, Hirsh et al., Lippmann,

etc.). Their term synergistic is defined in their sentence:
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When the error probability in a broadband condition is less than the

product of the error probabilities in the individual sub-bands, the bands

interact with synergy. [p. 2897; emphasis added]

while the term redundant is defined as

when the error probability in the broadband condition is larger than

the product of the error probabilities in the individual bands, the

bands are considered to carry redundant information. [p. 2897; emphasis

added]

These two definitions are presented graphically in Fig. 2.27.

For the synergy case (e < e1e2), the measured error e (SNR) is smaller than the

model error (ê = e1e2). This is what one could expect if there are bands containing

independent information (active channels) missing from the calculation, since if

these missing bands were factored into the prediction, the discrepancy in error

would decrease. As an example, if there were an visual side channel, the true error

would necessarily be smaller than what the auditory model would predict. Thus

synergy may be thought of as a deficient model, having missing channels.

For the second definition, which Müsh and Buus define as redundant informa-

tion, = e1e2, the model error ê = e1e2 is smaller than the measured error e (SNR),

implying that the band errors themselves are smaller than they should be. This

would be a glaring error, since it would mean either that the observer is either not

integrating the information across bands (when they listened to individual band,

they heard the cue, but when they listened to all the bands, they missed it, making

the wideband error greater), or the bands have overlapping common information,

that cannot be used to advantage, because the observer already got the information

from another band. This would truly be “redundancy” across bands.

The real question is, do these “synergistic and redundant interactions” actually

exist in the data? This is a challenging and important question. Müsch and Buus

base their case on the earlier work of Hirsh, Kryter, Warren, and Lippmann. This
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FIGURE 2.27: When the measured phone score s (SN R) is greater than the AI model

prediction ŝ (SN R), Müsch and Buus call the model Synergistic, and when the model predicts

a score that is less than the measured score, it is Redundant. This scheme is conceptually

a nice way of dealing with error in the AI model, but we must be careful not to lead the

interpretation of such model deviations. For example, in the case of the Kryter-effect, a

dead-band results in s < ŝ , and therefore leads to “redundancy.” This sounds a bit like

the Kryter-effect is explained, when it is not. How could the introduction of a dead-band

somehow create redundancy in the data? A data-centric terminology might be clearer. For

example, one might simply say that the model over- or under-predicts the score. For the

Kryter-effect case “The AI model over-predicts the score.”

review has discussed each of these papers, and challenged identifiable deviations

from AI theory for Hirsh, Warren, and Lippmann. Kryter may have identified an

interesting redundant effect, which is still in need of an explanation, for his case

of 2–3 noncontiguous bands of speech, with no noise present. However until these

conditions have be tested with the Fletcher and Galt model, we cannot be sure. In

any case, the use of MOGS to fix AI synergy or redundant effects due to context

[i.e., the results of (Miller et al., 1951)], seem problematic, since AI does not the

“synergistic” effect of context (Boothroyd and Nittrouer, 1988).
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C H A P T E R 3

Intelligibility

Other than for the brief digression in Section 1.3.1 regarding Fig. 1.4, we have

concentrated on articulation studies which take a bottom-up view. We next turn

to studies investigating top-down word recognition, using meaningful words and

context.

The recognition chain: Figs. 1.3 and 3.1 summarize the statistical models that

take us from the speech signal, to band SNRs, event, phone, syllable, word, and

sentence probabilities. Once the band SNRs are determined, the event errors ek are

computed, then the mean phone score s , and then the syllable articulation S. Given

S, the meaningful word probabilities W , I (ZP sentence scores), and W (words

in HP sentence) may be computed. Each of these models has one free parameter,

such as emin, k1, k2, and j1.

In Fig. 1.3 we associated the band errors with elementary events obtained

from the parallel processing of the cochlea and, say, the auditory cortex. We chose

the auditory cortex here without much evidence other than the fact that it is known

that tonotopic maps are present in this cortex, so phones could not have been

recognized up to, and including, these layers of processing.1 The band errors may

represent probabilities of the detection of binary events extracted from the speech

signal. If any (or many) of the channels capture the event, the feature is recognized

1 For our purpose here, we do not need to know where the event is extracted.
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FIGURE 3.1: The recognition chain. This set of statistical relations summarizes the
relations shown in the lower part of Fig. 1.3. The probability correct for words is defined
as W . The probability for recognition of words in high predictability sentences (HP) is
defined as W . Thus the measure W(W) results from the HP sentence context. An example
of a ZP sentence is “Sing his get throw.” An example HP sentence is “Warm sun feels
good.”

with a probability that depends on the SNRs in the many channels. When sufficient

features are determined, the phone is identified, as measured by probability s .

In summary, context effects seem to boil down to complex problems of com-

binatorics, based on the probabilities of elementary (sub-phonemic) events. This is

an important conclusion that, when properly understood, can significantly impact

our view of ASR. One important implication of the model (i.e., Fig. 1.3) is that,

once a few model parameters have been established, the band SNRs are all that are

required to establish the HP sentence error score.

3.1 BOOTHROYD (1968–2002)
The results of Boothroyd extend Fletcher and Stewart’s “independence model,” and

thus the AI method, by looking at the effects of context, both at the word level and

the sentence level (Boothroyd, 1968, 1978; Boothroyd and Nittrouer, 1988). There



INTELLIGIBILITY 99

are many fewer CVC words than there are CVC sounds, creating a context effect.

In his 1968 paper, Boothroyd states that “the effect of context is quantitatively

equivalent to adding statistically independent channels of sensory data to those

already available from the speech units themselves.” This assumption leads to the

parallel processing relation (denoted the “k-factor”)

W = 1 − (1 − S)k, (3.1)

where k ≥ 1 is a degrees of freedom parameter, S is the MaxEnt syllable articulation

score, and W is the meaningful word recognition score. This equation takes the

score of elements (i.e., S) measured under conditions of no context, and returns the

score of the same elements (i.e., W) after context has been added. A value of k = 1

corresponds to no context, giving W = S.

Boothroyd suggests we view Eq. (3.1) as a the product of two correlated error

terms, by factoring the error as

W = 1 − (1 − S)(1 − S)k−1. (3.2)

When written this way the context may be viewed as an independent context

channel having probability (1 − S)k−1. The context information goes to zero as

S → 0. Thus the context may be viewed as an independent parallel processing

channel.

A second formula is used to predict “from elements to wholes.” When word

scores W (an element) is use to predict a sentence score I (whole), Boothroyd found

a formula similar to sequential processing relation Eq. (2.3), but with an exponent

that depends on the number of functional words (i.e., the degree of the context

effect), which he called a “ j-factor”

I = W j . (3.3)

The j factor is between one and the number of words in the sentence. For MaxEnt

sentences [what Boothroyd calls “zero predictability” (ZP) sentences], j equals

the number of words. For “high predictability” (HP) sentences, j is less than
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the number of words. (Example with j = 1: Do you like sweets? I do not like

them.)

The 1988 paper gives several plots showing the individual points on the

curve, which give an idea of the magnitude of the error for these models. The

authors also show the effects of cascading the various models to predict meaningful

(HP) sentences from MaxEnt phones and words.

Grant and Seitz have recently estimated k values (parallel processing) under

various conditions of sentence context (Grant and Seitz, 2000), with k in the range

from 1.5 to 2.25.

Recently it has been reported that Boothroyd’s “ j ” factor may only be valid

under circumstances where the listener is under listening stress. This is a most

interesting possibility that could have an important impact on any future modeling

of language context effects (Chisolm, personal communication, 2000; Boothroyd,

2002; Grant and Seitz, 2001; Bronkhorst et al., 2002).

3.2 BRONKHORST ET AL. (1993)
This important paper takes a forward looking approach to speech context ef-

fects, developing a specific and detailed probabilistic model of context process-

ing. The model is then verified with an acoustic and an orthographic experiment,

giving a deep insight into how human context processing works. An important

application includes a simulation of the Miller, Heise, and Lichten experiment

(Miller et al., 1951). At the heart of this research is a generalization of the j and

k context models of Boothroyd (sequential and parallel processing), which also

accounts for chance.

The formulation assumes a two-stage recognition process: First the elements

are recognized, and second context is used to fill in missing elements. The first

stage represents input, while the second stage contains the actual model. This

two-stage approach is consistent with the outline of HSR described in Fig. 1.3.

The front-end input is either derived from the AI, measured, or designed into

the experiment, as in the case of the orthographic experiment. Unlike Fig. 1.3, the
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model is specific. In the orthographic experiment, the results are explicitly modeled,

with the outcome that human and machine performance are functionally identical.

This is a proof, by example, of the claim that context processing may be done by a

deterministic state machine. No model of the first stage (the auditory front-end) is

attempted.

An example: A simple example of the Bronkhorst et al. model (the second stage)

for the special case of a CV is instructive, and will suffice for the present discussion.

There are two sounds in a CV, and the articulation for the consonant is c , and for

the vowel is v. There are four possible outcomes from a trial, both correct, C correct

V incorrect, V correct C incorrect, and both incorrect. In the model the outcomes

are grouped into the number of errors (n) that are made in the syllable, giving three

measures, for our CV example, called Qn with n = 0, 1, 2:

Q0 = c v

Q1 = (1 − c )v + c (1 − v)

Q2 = (1 − c )(1 − v).

(3.4)

Assuming independence, the articulations are multiplied. The first term Q0 is the

probability of 0 errors, Q1 is the probability of making 1 error, in any position,

while Q2 is the probability of making 2 errors. These measures are the outputs of

the first stage of processing (i.e., they represent inputs to the model), and corre-

spond to the models used in the formulation of Fletcher’s AI, such as Eq. (2.4).

The term Q0 corresponds to sequential processing, while Q2 corresponds to par-

allel processing. The term Q1 is novel, and has not been previously considered in

any context model. These equations summarize the first (front-end) stage of pro-

cessing. Either c and v or the three Qn values are the inputs to the second stage

(the model).

Context is accounted for by the model (stage 2). This is done by introducing

probabilities c 1, which represent the chance of guessing either C or V , and c 1c 2,

which represents the chance of guessing the CV, when neither the C or the V
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is heard. Probability c 1c 2 can be taken to be 1/Nc v, where Nc v is the cardinality

of the set of CV sounds, or zero, depending on the details of the experimental

measurement. The output of the model is the context model for the CV recognition

Wcv = Q0 + c 1 Q1 + c 1c 2 Q2. (3.5)

The variable Wcv indicates the intelligibility after context has been accounted for

(namely the intelligibility at the output of the model, while {c , v} is the articulation

at the input to the model), and explicitly models the last two boxes of Fig. 1.3. For

the case where c 2 = 0 (chance of guessing the CV word is zero), the context model

equation would be

Wcv = Q0 + c 1 Q1. (3.6)

A model equation is also given for recognizing one element (i.e., c or v,

which we shall call s ), which in this case is

s = (1 − c 1)Q1 + 2(1 − c 1)c 2 Q2. (3.7)

Again, when c 2 = 0, and writing this expression in terms of q ′s gives

s = (1 − c 1)(1 − c )v + (1 − c 1)c (1 − v). (3.8)

The terms (1 − c 1)(1 − c ) and (1 − c 1)(1 − v) represent the probability of getting

one unit wrong (C or V) and then guessing that unit, all under the assumption

of independence. These formulas are related to Eq. (2.2), and allow us to explore

λ(SNR) = v/c . Figure 2 of the Bronkhorst et al. paper finds that

v = 1 − (1 − c )k, (3.9)

with 2.6 ≤ k ≤ 3.9. Solving for λ gives λ ≈ √
k.

Finding the c i ’s: The inputs to the Bronkhorst et al. model are the c and v, which

are used to compute the Qn ’s. The other required input parameters, the c i ’s, which
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are directly computed from a dictionary. The values of c 1, c 2, and c 3, based on a

CVC dictionary, are shown in Fig. 3 of the Bronkhorst et al. paper.

Coarticulation effects: A most interesting problem this paper tacitly raises is the

question of the aural information bearing element: is it in the consonant and vowel,

as basic units, or is it in the transition (the CV and VC transition)? For example,

given a CV, there is potentially just as much information in the C,V combination as

there is in the CV transition. Suppose their are 2 C and 2 V sounds. Then the total

number of possibilities are 2 × 2 = 4 CV sounds. The number of transitions is 2 to

2, which is also 4. Thus if we code the information as a transition, or more directly

as C and V units, the total entropy could be the same. This is not a minor point. We

propose the following definitions: We call a 2-phone the grouping of C followed

by V (or V followed by C). We define a diphone as the CV unit, namely where

the information is carried by the transition between the initial and final consonant.

The issue here is about the relative entropy in diphone vs. 2-phoneme coding. An

orthographic representation is a unit code. Speech could be a diphone code, and yet

be represented orthographically as a unit (phoneme) code, because, in theory, the

entropy could be the same. As evidence for diphone coding, single letter diphthong

vowels, such as “I” and “a,” are VV sounds, not stationary vowels.

3.3 TRUNCATION EXPERIMENTS AND
COARTICULATION, FURUI (1986)

In 1986, Furui did a series of experiments, which gives insight into the temporal

processing of events and perhaps coarticulation. It seems that the CV events are

very compact in time, maybe in as little as 10 ms. In Furui’s experiments, CV sounds

were truncated from the onset and from the end, and listeners were asked to identify

the truncated sound. In Fig. 3.2 some of the identification results are shown. In

the left panel we see the C, V, and CV scores as a function of truncation from the

onset, and in the right panel we see the C, V, and CV scores when truncating from

the end of the sound.
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FIGURE 3.2: In the left panel of this figure from Furui (1986) the CV sounds is truncated

from the onset. At some time, labeled the critical point, the consonant identification score

drops from 90% to 45% within 10 ms. The vowel score is constant at close to 100% for

these truncation times. In the right panel the CV is truncated from the end. In this case

both the C and V change with nearly the same “critical point.” In one example shown in the

paper, the two critical point are within 10 ms of each other. The most obvious interpretation

of this data is that the CV sounds carries the information in a well-localized time having

≈10-ms duration.

3.4 VAN PETTEN et al. (1999)
This study (Van Petten et al., 1999) [see also (Van Petten and Kutas, 1991)] sets

out to find how long it takes to process semantic context. The first step in this study

was to determined the isolation point (IP) for 704 words in neutral (ZP) sentences.

The IP is defined as the time from the start of the word, quantized to 50 ms steps,

such that 7 out of 10 people recognize the word. Each of the 704 words was placed

in the neutral carrier sentence “The next word is test-word.” The truncated words

were randomized with all the other words, and then presented to the listeners. In

the left panel of Fig. 3.3 we see the average of all the scores, synchronized to the

IP determined for each word. In the right panel we see the distribution of IPs and
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FIGURE 3.3: The isolation point is defined as that truncation time corresponding to more

than 70% correct recognition, quantized to 50-ms intervals. The corpus of 704 words were

measured in this experiment. This figure shows the average over all 704 words, synchronized

to each word’s IP.

word durations. The mode of the IP is close to 300 ms, while the mode of word

of durations is just under 600 ms. It seems that words are typically recognized half

way through the word, well before the talker has finished the utterance.

When the words are placed in a simple context, as defined in Fig. 3.4, the

listeners identified that context with the same timing and temporal resolution as

dollars
dolphins
scholars

Cohort congruous
Cohort incongruous

IP

Time

Pay with ...

Rhyme

scholars dolphins

dollars

FIGURE 3.4: Averaged ERP N400 responses synchronized to the IP, for many rhyming

word responses. The time graduals are 200 ms apart in this figure.
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used to recognize the word. In other words, the recognition of the words and the

context must be done in parallel, and simultaneously. This conclusion follows from

ERP recordings from the scalp of the listener. A brain wave signal called the N400

(so-named because it is a negative going scalp potential, with an average latency of

400 ms) shows that the listener distinguishes the difference between the congruous

sentence “Pay with dollars.” from the incongruous sentence “Pay with dolphins”

at the word’s IP. When the sentences are synchronized to the IP and the ERP’s

averaged, the N400 is resolved from the noise. It follows that context is processed

in parallel with the word’s phonemes.

When a third word is provided (scholars), which rhymes with the congruous

word, that is out of context from the first syllable, the N400 triggers 200 ms

before the IP. These results are consistent with the idea that context processing

is being done in parallel with the phone and word recognition. The point most

relevant to the present paper is that the timing of the use of context information is

quite restricted, and is done in “real time,” with no significant delay (i.e., somewhere

between 50 and 200 ms).
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C H A P T E R 4

Discussion with Historical
Context

There is a lot to be learned by reviewing the speech articulation literature. Starting

from the invention of the telephone, speech testing became a critical exercise. This

research began with Rayleigh in 1908 and blossomed into the work of George

Miller in the 1950s. Computers have done a lot for speech testing, but they may

have provided a distraction from the important speech testing. With the computer

revolution now maturing, we can return to the real issues of human information pro-

cessing, and the many important questions regarding the articulation matrix (AM).

Of course, today’s computers make otherwise difficult speech testing almost trivial.

Following the introduction, some fundamental definitions are introduced

that relate speech perception, communication theory, and information theory. A

key concept is the AM, composed of all possible PI functions Ps ,h (SNR), which

are defined as the probability of correctly hearing sound h after speaking sound

s , as a function of the SNR. A basic model of HSR is introduced in Fig. 1.3

shows the cochlea followed by a cascade of processing layers. The initial layers

represent analog across-frequency processing, defining the front-end. The front-

end determines the underlying perceptual speech features, denoted events, which

are the source of the quantal recognition blocks of the AM at intermediate signal

to noise ratios. Quantal effects in the AM were first seen by Campbell (1910), but

were first systematically studied by Miller and Nicely, as shown in Fig. 2.12, based
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on AM data similar to the data of Fig. 2.11. When such AM data are analyzed by

eigenvalue decomposition, we see a natural clustering of the sounds, as shown in

Fig. 2.23, reflecting the underlying events.

A much more precise method of finding the groups has been developed by

Allen (2005), and further developed in this review. By finding those sounds h for

a given s , for which Ps ,h (SNR) rises above chance as the SNR increases from its

lowest levels, it is possible to precisely define every group. (Those sounds h which

do not have rising PI functions are not in that group.) The relative strength of each

group may be measured by the corresponding local maximum in the off-diagonal

PI functions, as seen in Fig. 2.14, or in AIg when plotted as a function of the AI,

as explicitly shown in Fig. 2.19. These methods have resulted in a reliable way of

defining the AM groups.

The model provides us with a way of understanding and quantifying ro-

bustness in speech recognition. Many years of study and modeling have clearly

demonstrated that existing ASR systems are not robust to noise, factors due to the

acoustic environment (i.e, reverberation and channel frequency response), and talker

variations (respiratory illness, mouth to microphone distance, regional speaker di-

alects, cultural accents, vocal tract length, gender, age, pitch). Robustness to these

factors is the key issue when comparing ASR and HSR performance. The question

raised here is “Why is ASR so fragile?”, or asked another way, “Why is HSR so

robust?”.

The HSR AM holds the answer to the robustness question. An analysis of

the classic data of Miller and Nicely (1955) provides insight into the details of what

is going on in HSR. This analysis is incomplete however. Much more research will

be necessary before we can emulate human robustness. Quantifying it is a necessary

first step.

This still leaves us with the important and difficult job of identifying the un-

derlying events that give rise to each group. One important goal of this monograph

is to establish with absolutely clarity that the next research frontier is to determine

the events. More research must be done to find ways to do this, and this work is in

progress.
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Once the events have been determined, we will be able to move into the

domain of discrete processing, the back-end, modeled as a noiseless state machine.

This term implies that the discrete input events produce a deterministic discrete

output. According to the HSR model, all the errors are due to front-end event

processing. An important interface is the point where the results first become

discrete, as represented by the “???” in Fig. 1.3.

No review of speech intelligibility and articulation can be complete with-

out a thorough discussion of Fletcher’s AI, reviewed in Section 2.1. The AI is

direct descendent of Rayleigh’s and Campbell’s experiments. These experiments,

which were driven by the theory of probability, are also a natural precur-

sor to the development of information theory. Starting from an AT&T inter-

nal publication in 1921, Fletcher developed two classes of articulation rela-

tions. The first class was products of probability correct, as in the relations

between the mean phone score s and MaxEnt syllables S, as described by

Eqs. (2.2)–(2.4). I have called this class sequential processing, to reflect the fact that

any error in a chain reduces the score. The second class is what I have called parallel

processing, corresponding to across-frequency listening, as given by Eq. (2.12). The

formulation of this relationship resulted from an assumption of additivity of artic-

ulation Eq. (2.6). In parallel processing, a lone channel, of many, can increase the

articulation to 100%. Channels having no information do not contribute to the

final results. It is convenient to think of all possible outcomes as a unit volume, as

depicted in Fig. 2.5. Such a geometrical construction helps us to think about all

the possible permutations.

Steinberg, who had worked with Fletcher on AI theory for almost 20 years,

and French published their classic paper in 1947, after being challenged by Leo

Berenak to make their method public. In this paper they provided the formula for

the band errors ek given by Eq. (2.14). Section 2.5.5 has shown, for the first time,

that the AI, defined by Eq. (2.42), is closely related to Shannon’s formula for the

channel capacity for a Gaussian channel [Eq. (2.43)].1

1 It is fascinating that the early formulation of information theory, by Hartley and Nyquist, and
Fletcher’s AI theory, were being simultaneously developed at the same company. It is proving
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After the publication in 1938 of S. S. Stevens’ book on basic psychoacoustics,

loudness and intensity discrimination became a main topic of research at Harvard.

Soon, because of World War II, AI and speech testing became the focus. Much of

this work, at Harvard and MIT, was soon the charge of George Miller, who clearly

was intellectually in command of the topic. He wrote many of his classic papers

and books during and following this war effort. Prior to 1950, almost all the speech

testing was open-set testing. Miller introduced the closed-set test, in an attempt to

tease apart the role of Entropy in the articulation task.

Miller frequently cited Claude Shannon and his theory of information. Shan-

non had crystallized many of the ideas that had been floating around Bell Labs,

such as Nyquist’s sampling theorem for band limited signals, and Hartley’s ideas

on counting the number of levels in terms of the number of standard deviations

over the range of the signal (Hartley, 1928). This idea of counting intensity JNDs

was well known to Hartley (a Rhodes Scholar) from his knowledge of classical psy-

choacoustic principles (Hartley wrote one of the first modern papers on localization

(Hartley and Fry, 1921)).

Miller introduced these basic tools, information theory, entropy, and the

discrete channel, into his speech perception studies. Once the AM was measured in

sufficient detail, it was clear that something more basic than a phone (or phoneme)

were present in the data. Miller and Nicely’s results confirmed and supported the

observations of Halle (Jakobson et al., 1967), as well as work at Haskins Laboratory

on spectrogram speech synthesis, that some sort of basic distinctive features were

being used as an underlying speech code.

In my view, Miller and Nicely’s insights were sidetracked by two re-

search misdirections. First was the distinctive feature, and second was the research

difficult to make the connection however. Hartley was on medical leave from 1929–1939. Nyquist
was in AT&T’s Development and Research (D&R) organization and, after it was merged with
Bell Labs in 1934, went to Transmission development (area 34), Department 348. Fletcher was in
Western Electric Engineering until Bell Labs was created in 1929. In 1930 Fletcher was promoted
to Director of Physical Research (328) in the research organization (area 32), within the newly formed
Bell Labs. This promotion reflected his many important contributions.
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on language modeling. While both of these areas of research have their important

payoffs, neither was directed at the larger problem of ASR robustness. It is the lack

of robustness that keeps ASR from moving out of the laboratory. In my view, the

key research question is “How does the auditory system extract perceptual features

(i.e., events)?”. By using the tools of linear algebra, such as eigen and singular value

decomposition, and the off-diagonal PI function analysis described in Allen (2005),

one may find the perceptual clustering of the speech sounds directly from the AM.

By splitting the AM into its symmetric and skew-symmetric parts, as shown in

Fig. 2.21, new insights may be clarified via this “perceptual eigen space.” The small

skew-symmetric components, such as /fa/ versus /θa/, as shown in the lower half of

Fig. 2.21, seem to show talker biases. The much larger and robust symmetric part of

the AM defines distances between the sounds, reflecting the underlying perceptual

space, with larger confusions indicating smaller distances. Analyzing the AM in

this way, as shown in Fig. 2.23, is much more informative than the many previous

attempts where production based features were forced on the data, in an ad-hoc

manner (Miller and Nicely, 1955; Wang and Bilger, 1973).

Two final subsections discuss AI validity (2.7) and criticisms (2.8). These

sections are important because they review and summarize the variety of opinions

on the validity of AI theory. With only a few exceptions, these criticisms have found

to be invalid and unwarranted. Furthermore, we must keep in mind that there are at

least three different versions of the AI. The most detailed (and the original version)

by Fletcher and Galt has been the least studied (Rankovic, 1997). The one failing of

AI may be its over-prediction of the score (i.e., s < 1 − ∏
k e k) (i.e., redundancy)

for the case of multiple pass bands (Kryter, 1960). However, Fletcher and Galt’s

1950 model has not yet been tested for this case, so it may be premature to draw

this conclusion.

Section 3 moves on to the topic of Intelligibility, and the effects of word and

sentence context. Much of this work was done by Boothroyd, in a series of classic

papers. More recently is the important work of Bronkhorst, who has significantly

extended context modeling.
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We then briefly discussed coarticulation and described the work of Furui,

who has shown that, at least in some cases, the CV is carried by a very short 10-ms

segment of dynamic speech change. This leads us to the conclusion that the events

in the CV and VC can be fundamentally different. These ideas are similar to the

early work at Haskins Laboratory based on painted speech, by Frank Cooper and

his many colleagues.

Finally in Section 3.4, we discuss the interesting work of VanPetten, who

has explored the relative timing of high-level syntax processing. Her work may be

interpreted as showing that possible meanings are parsed simultaneously as phones

are identified, on a time scale that is less than 200 ms, and typically well before the

word is resolved.

4.1 ASR VERSUS HSR
Automatic speech recognition has long been a dream. While ASR does work today,

and is available commercially, it is impossibly fragile. It is sensitive to noise, slight

talker variations, and even slight changes in the microphone characteristics. While

the exact reasons for the lack of robustness are not known, it is clear that present day

ASR works very differently from human speech recognition. HSR accurately char-

acterizes speech sounds into categories early in the process, well before context has

been utilized. The SNR ratio at the input to the HSR feature extraction processing

is determined by cochlear filtering. HSR seems to use features, such as correlations

in timing, onsets and spectral balance, that are typically averaged and aliased away

by ASR systems. The lack of emphasis on a high-quality spectral analysis with a

quality filterbank is also a major failing with most modern ASR systems.

Typically ASR uses properties of the speech signal that are not used by human

listeners. The SNR is typically determined by a low-quality filter bank, or no filter

bank at all, in many ASR systems. This leads to significant performance reduction in

noise. In ASR systems in use today, the issues of human-like feature extraction have

largely been ignored. ASR “features” such as MFCC are heuristically derived. Sadly,

a theoretical and experimental foundation, based on human performance metrics,

is seriously lacking in present day ASR. Rather ASR is based on HMM models,
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inspired by low-entropy language models. And even these language models perform

poorly when compared to human language processing (Miller and Isard, 1963).

Articulation index theory predicts that as long as the AI is constant, s (AI ) is

constant, and in this case, the long-term spectrum is not relevant. One may conclude

that the recognition measure s (AI ) is not determined by the long-term spectrum

of the speech, rather it is determined by in-band and across-band modulations in

the speech spectrum, at the output of the cochlea. These components are related

to the short term loudness, as modeled by Fletcher and Galt’s AI theory.

To better understand how HSR works we need much more articulation matrix

data in the presences noise, filtering, and temporal modifications. We need more

experimental databases of both MaxEnt CV and VC sounds, from many talkers.

From an analysis of these AM databases, using the methods of information theory,

we should be able to quantify the events, which are the key information bearing

elements. Only by a direct comparison of the AI spectrogram [i.e., AI(t, f, SNR)] and

the AM(SNR) [i.e., Ps ,h (SNR)], near SNRs corresponding to the group bifurcation

points (i.e., SNRg ), will we be able to identify the events that make up the underlying

variables of HSR.

It is likely that speech is not a chain of Cs and Vs, rather the information

is carried in the VC and CV transitions (Furui, 1986). We need new experimental

data and a detailed analysis of this problem. It is likely that such an analysis holds

the answers.

In my view we need to stop thinking in the frequency domain, and think

more of events as a time-frequency sequence of events. Events are both time-

and frequency-local. It is cochlear filtering that gives us high-fidelity extraction,

removing noise from the signal by filtering. Understand the physics behind cochlear

function is critical to robust ASR systems. However, it is the temporal correlation

of modulations across frequency, over neighboring critical bands, that seem to be

the key to the event, and it is the cochlea that defines these modulations.

Strong evidence for a timing basis of events was found by Furui (1986),

in his temporal truncation experiments, where the recognition accuracy change

by 40% over a 10 ms truncation interval change. This same time region was also
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found to be where the spectrum was changing most rapidly. It is difficult to rec-

oncile these data with spectral measures, such as relative formant frequencies. The

work of Robert Shannon and his colleagues also strongly supports a timing view

(Shannon et al., 1995) of feature support.

Randomizing words in meaningful sentences (reversing the word order, for

example) only slightly reduces human performance. Furthermore these reductions

may likely come from memory overload effects, not from reductions in processing

strategy. Markov model based context processing, on the other hand, depends very

strongly on word order, looking for a particular state-sequence of sounds or words.

As predicted in 1963 by Miller and Isard, robustness in HSR is not a problem of

language context effects.

If it is the errors in each event that are the source of the phone errors, as

implied by the analysis of Miller and Nicely, and if the context processing can be

treated as a noiseless state machine, as implied by the AI analysis of Fletcher, and

later Boothroyd, then it follows that the problem of robustness in speech perception,

to noise and filtering, will be solved if we can robustly extract the events from the

speech by signal processing means. To do this we need to accurately identify and

characterize events using the AM, after carefully controlling for context effects.
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